A Computational Non-commutative Geometry Program for Disordered Topological Insulators

Nonfiction, Science & Nature, Science, Physics, Solid State Physics, Mathematical Physics
Cover of the book A Computational Non-commutative Geometry Program for Disordered Topological Insulators by Emil Prodan, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Emil Prodan ISBN: 9783319550237
Publisher: Springer International Publishing Publication: March 17, 2017
Imprint: Springer Language: English
Author: Emil Prodan
ISBN: 9783319550237
Publisher: Springer International Publishing
Publication: March 17, 2017
Imprint: Springer
Language: English

This work presents a computational program based on the principles of non-commutative geometry and showcases several applications to topological insulators. Noncommutative geometry has been originally proposed by Jean Bellissard as a theoretical framework for the investigation of homogeneous condensed matter systems. Recently, this approach has been successfully applied to topological insulators, where it facilitated many rigorous results concerning the stability of the topological invariants against disorder.

In the first part of the book the notion of a homogeneous material is introduced and the class of disordered crystals defined together with the classification table, which conjectures all topological phases from this class. The manuscript continues with a discussion of electrons’ dynamics in disordered crystals and the theory of topological invariants in the presence of strong disorder is briefly reviewed. It is shown how all this can be captured in the language of noncommutative geometry using the concept of non-commutative Brillouin torus, and a list of known formulas for various physical response functions is presented. 

In the second part, auxiliary algebras are introduced and a canonical finite-volume approximation of the non-commutative Brillouin torus is developed. Explicit numerical algorithms for computing generic correlation functions are discussed. 

In the third part upper bounds on the numerical errors are derived and it is proved that the canonical-finite volume approximation converges extremely fast to the thermodynamic limit. Convergence tests and various applications concludes the presentation.

The book is intended for graduate students and researchers in numerical and mathematical physics.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This work presents a computational program based on the principles of non-commutative geometry and showcases several applications to topological insulators. Noncommutative geometry has been originally proposed by Jean Bellissard as a theoretical framework for the investigation of homogeneous condensed matter systems. Recently, this approach has been successfully applied to topological insulators, where it facilitated many rigorous results concerning the stability of the topological invariants against disorder.

In the first part of the book the notion of a homogeneous material is introduced and the class of disordered crystals defined together with the classification table, which conjectures all topological phases from this class. The manuscript continues with a discussion of electrons’ dynamics in disordered crystals and the theory of topological invariants in the presence of strong disorder is briefly reviewed. It is shown how all this can be captured in the language of noncommutative geometry using the concept of non-commutative Brillouin torus, and a list of known formulas for various physical response functions is presented. 

In the second part, auxiliary algebras are introduced and a canonical finite-volume approximation of the non-commutative Brillouin torus is developed. Explicit numerical algorithms for computing generic correlation functions are discussed. 

In the third part upper bounds on the numerical errors are derived and it is proved that the canonical-finite volume approximation converges extremely fast to the thermodynamic limit. Convergence tests and various applications concludes the presentation.

The book is intended for graduate students and researchers in numerical and mathematical physics.

More books from Springer International Publishing

Cover of the book Revisiting the Global Imaginary by Emil Prodan
Cover of the book Clifford Analysis and Related Topics by Emil Prodan
Cover of the book Oceanic Internal Tides: Observations, Analysis and Modeling by Emil Prodan
Cover of the book Smart City by Emil Prodan
Cover of the book Ubiquitous Computing and Ambient Intelligence by Emil Prodan
Cover of the book Multivariable Calculus with Applications by Emil Prodan
Cover of the book The American Experience in Environmental Protection by Emil Prodan
Cover of the book Principles of Adult Surgical Critical Care by Emil Prodan
Cover of the book Cognitive Communication and Cooperative HetNet Coexistence by Emil Prodan
Cover of the book New Perspectives on Prison Masculinities by Emil Prodan
Cover of the book Advances and New Trends in Environmental Informatics by Emil Prodan
Cover of the book Explosions in Underground Coal Mines by Emil Prodan
Cover of the book Coronary Graft Failure by Emil Prodan
Cover of the book Intimacies, Citizenship and Refugee Men by Emil Prodan
Cover of the book Proteomics in Domestic Animals: from Farm to Systems Biology by Emil Prodan
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy