A Feature-Centric View of Information Retrieval

Nonfiction, Computers, Database Management, Information Storage & Retrievel, Application Software, General Computing
Cover of the book A Feature-Centric View of Information Retrieval by Donald Metzler, Springer Berlin Heidelberg
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Donald Metzler ISBN: 9783642228988
Publisher: Springer Berlin Heidelberg Publication: September 18, 2011
Imprint: Springer Language: English
Author: Donald Metzler
ISBN: 9783642228988
Publisher: Springer Berlin Heidelberg
Publication: September 18, 2011
Imprint: Springer
Language: English

Commercial Web search engines such as Google, Yahoo, and Bing are used every day by millions of people across the globe. With their ever-growing refinement and usage, it has become increasingly difficult for academic researchers to keep up with the collection sizes and other critical research issues related to Web search, which has created a divide between the information retrieval research being done within academia and industry.  Such large collections pose a new set of challenges for information retrieval researchers.

In this work, Metzler describes highly effective information retrieval models for both smaller, classical data sets, and larger Web collections. In a shift away from heuristic, hand-tuned ranking functions and complex probabilistic models, he presents feature-based retrieval models. The Markov random field model he details goes beyond the traditional yet ill-suited bag of words assumption in two ways. First, the model can easily exploit various types of dependencies that exist between query terms, eliminating the term independence assumption that often accompanies bag of words models. Second, arbitrary textual or non-textual features can be used within the model. As he shows, combining term dependencies and arbitrary features results in a very robust, powerful retrieval model. In addition, he describes several extensions, such as an automatic feature selection algorithm and a query expansion framework. The resulting model and extensions provide a flexible framework for highly effective retrieval across a wide range of tasks and data sets.

A Feature-Centric View of Information Retrieval provides graduate students, as well as academic and industrial researchers in the fields of information retrieval and Web search with a modern perspective on information retrieval modeling and Web searches.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Commercial Web search engines such as Google, Yahoo, and Bing are used every day by millions of people across the globe. With their ever-growing refinement and usage, it has become increasingly difficult for academic researchers to keep up with the collection sizes and other critical research issues related to Web search, which has created a divide between the information retrieval research being done within academia and industry.  Such large collections pose a new set of challenges for information retrieval researchers.

In this work, Metzler describes highly effective information retrieval models for both smaller, classical data sets, and larger Web collections. In a shift away from heuristic, hand-tuned ranking functions and complex probabilistic models, he presents feature-based retrieval models. The Markov random field model he details goes beyond the traditional yet ill-suited bag of words assumption in two ways. First, the model can easily exploit various types of dependencies that exist between query terms, eliminating the term independence assumption that often accompanies bag of words models. Second, arbitrary textual or non-textual features can be used within the model. As he shows, combining term dependencies and arbitrary features results in a very robust, powerful retrieval model. In addition, he describes several extensions, such as an automatic feature selection algorithm and a query expansion framework. The resulting model and extensions provide a flexible framework for highly effective retrieval across a wide range of tasks and data sets.

A Feature-Centric View of Information Retrieval provides graduate students, as well as academic and industrial researchers in the fields of information retrieval and Web search with a modern perspective on information retrieval modeling and Web searches.

More books from Springer Berlin Heidelberg

Cover of the book Chest Trauma by Donald Metzler
Cover of the book Thyroid Pathology by Donald Metzler
Cover of the book Anorectal and Colon Diseases by Donald Metzler
Cover of the book Perspectives in Urban Ecology by Donald Metzler
Cover of the book Structure-Property Relationships in Non-Linear Optical Crystals I by Donald Metzler
Cover of the book The Organic Carbon Cycle in the Arctic Ocean by Donald Metzler
Cover of the book Bilevel Programming Problems by Donald Metzler
Cover of the book New Directions in Regional Economic Development by Donald Metzler
Cover of the book Diversity, Biomineralization and Rock Magnetism of Magnetotactic Bacteria by Donald Metzler
Cover of the book Glycogen and its Related Enzymes of Metabolism in the Central Nervous System by Donald Metzler
Cover of the book Mit Funktionen Zusammenhänge und Veränderungen beschreiben by Donald Metzler
Cover of the book Financial Cryptography and Data Security by Donald Metzler
Cover of the book K-Taping bei Kindern by Donald Metzler
Cover of the book Microsurgery of Retinal Detachment by Donald Metzler
Cover of the book Suspended Matter in the Aquatic Environment by Donald Metzler
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy