Adiabatic Shear Localization

Frontiers and Advances

Business & Finance, Industries & Professions, Total Quality Management, Management & Leadership, Production & Operations Management
Cover of the book Adiabatic Shear Localization by , Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780080982007
Publisher: Elsevier Science Publication: May 22, 2012
Imprint: Elsevier Language: English
Author:
ISBN: 9780080982007
Publisher: Elsevier Science
Publication: May 22, 2012
Imprint: Elsevier
Language: English

Adiabatic shear localization is a mode of failure that occurs in dynamic loading. It is characterized by thermal softening occurring over a very narrow region of a material and is usually a precursor to ductile fracture and catastrophic failure. This reference source is the revised and updated version of the first detailed study of the mechanics and modes of adiabatic shear localization in solids. Building on the success of the first edition, the book provides a systematic description of a number of aspects of adiabatic shear banding. The concepts and techniques described in this work can usefully be applied to solve a multitude of problems encountered by those investigating fracture and damage in materials, impact dynamics, metal working and other areas. Specific chapters focus on energetic materials, polymers, bulk metal glasses, and the mathematics of shear banding as well as the numerical modeling of them. With its detailed coverage of the subject, this book is of great interest to academics and researchers into materials performance as well as professionals.

  • Up-to-date coverage of the subject and research that has occurred over the past 20 years
  • Each chapter is written on a different sub-field of adiabatic shear by an acknowledged expert in the field
  • Detailed and clear discussions of each aspect
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Adiabatic shear localization is a mode of failure that occurs in dynamic loading. It is characterized by thermal softening occurring over a very narrow region of a material and is usually a precursor to ductile fracture and catastrophic failure. This reference source is the revised and updated version of the first detailed study of the mechanics and modes of adiabatic shear localization in solids. Building on the success of the first edition, the book provides a systematic description of a number of aspects of adiabatic shear banding. The concepts and techniques described in this work can usefully be applied to solve a multitude of problems encountered by those investigating fracture and damage in materials, impact dynamics, metal working and other areas. Specific chapters focus on energetic materials, polymers, bulk metal glasses, and the mathematics of shear banding as well as the numerical modeling of them. With its detailed coverage of the subject, this book is of great interest to academics and researchers into materials performance as well as professionals.

More books from Elsevier Science

Cover of the book Progress in Rubber Nanocomposites by
Cover of the book Laboratory Investigation of Endocrine Disorders by
Cover of the book Materials and Devices for Bone Disorders by
Cover of the book Weather Analysis and Forecasting by
Cover of the book Mustard Lung by
Cover of the book A Comprehensive Guide to Solar Energy Systems by
Cover of the book Protein Phosphorylation in Health and Disease by
Cover of the book NMR Metabolomics in Cancer Research by
Cover of the book Nature's Machines by
Cover of the book Brain Transcriptome by
Cover of the book Toxicology in the Middle Ages and Renaissance by
Cover of the book LEED v4 Practices, Certification, and Accreditation Handbook by
Cover of the book Advances in Apparel Production by
Cover of the book From Dimension-Free Matrix Theory to Cross-Dimensional Dynamic Systems by
Cover of the book Mineral Deposits of Finland by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy