An Introduction to Mathematical Billiards

Nonfiction, Science & Nature, Science, Physics, Chaotic Behavior, Mechanics, Mathematics
Cover of the book An Introduction to Mathematical Billiards by Utkir A Rozikov, World Scientific Publishing Company
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Utkir A Rozikov ISBN: 9789813276482
Publisher: World Scientific Publishing Company Publication: December 5, 2018
Imprint: WSPC Language: English
Author: Utkir A Rozikov
ISBN: 9789813276482
Publisher: World Scientific Publishing Company
Publication: December 5, 2018
Imprint: WSPC
Language: English

A mathematical billiard is a mechanical system consisting of a billiard ball on a table of any form (which can be planar or even a multidimensional domain) but without billiard pockets. The ball moves and its trajectory is defined by the ball's initial position and its initial speed vector. The ball's reflections from the boundary of the table are assumed to have the property that the reflection and incidence angles are the same. This book comprehensively presents known results on the behavior of a trajectory of a billiard ball on a planar table (having one of the following forms: circle, ellipse, triangle, rectangle, polygon and some general convex domains). It provides a systematic review of the theory of dynamical systems, with a concise presentation of billiards in elementary mathematics and simple billiards related to geometry and physics.

The description of these trajectories leads to the solution of various questions in mathematics and mechanics: problems related to liquid transfusion, lighting of mirror rooms, crushing of stones in a kidney, collisions of gas particles, etc. The analysis of billiard trajectories can involve methods of geometry, dynamical systems, and ergodic theory, as well as methods of theoretical physics and mechanics, which has applications in the fields of biology, mathematics, medicine, and physics.

Contents:

  • Introduction
  • Dynamical Systems and Mathematical Billiards
  • Billiard in Elementary Mathematics
  • Billiard and Geometry
  • Billiard and Physics

Readership: Graduate students, young scientists and researchers interested in mathematical billiards and dynamical systems.
Key Features:

  • The book features a very popular topic, therefore it is suitable for any researcher working in this field and students interested in dynamical systems
  • Most material found in the book have not been published in English before
  • The book contains results of many recent papers related to billiards
  • In July of 2018, MathSciNet found more than 2420 entries for "billiards" in the entire database. The long list of literature devoted to billiards makes it difficult for a beginner to start reading the theory. Thus, this book will be useful to them
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

A mathematical billiard is a mechanical system consisting of a billiard ball on a table of any form (which can be planar or even a multidimensional domain) but without billiard pockets. The ball moves and its trajectory is defined by the ball's initial position and its initial speed vector. The ball's reflections from the boundary of the table are assumed to have the property that the reflection and incidence angles are the same. This book comprehensively presents known results on the behavior of a trajectory of a billiard ball on a planar table (having one of the following forms: circle, ellipse, triangle, rectangle, polygon and some general convex domains). It provides a systematic review of the theory of dynamical systems, with a concise presentation of billiards in elementary mathematics and simple billiards related to geometry and physics.

The description of these trajectories leads to the solution of various questions in mathematics and mechanics: problems related to liquid transfusion, lighting of mirror rooms, crushing of stones in a kidney, collisions of gas particles, etc. The analysis of billiard trajectories can involve methods of geometry, dynamical systems, and ergodic theory, as well as methods of theoretical physics and mechanics, which has applications in the fields of biology, mathematics, medicine, and physics.

Contents:

Readership: Graduate students, young scientists and researchers interested in mathematical billiards and dynamical systems.
Key Features:

More books from World Scientific Publishing Company

Cover of the book Advanced Materials, Technology and Application by Utkir A Rozikov
Cover of the book Non-Axiomatic Logic by Utkir A Rozikov
Cover of the book The Base Excision Repair Pathway by Utkir A Rozikov
Cover of the book Total Mean Curvature and Submanifolds of Finite Type by Utkir A Rozikov
Cover of the book Advances in Geosciences by Utkir A Rozikov
Cover of the book The Making of Southeast Asian Nations by Utkir A Rozikov
Cover of the book Introduction to Microfinance by Utkir A Rozikov
Cover of the book An Elementary Primer for Gauge Theory by Utkir A Rozikov
Cover of the book Charles Darwin in Cambridge by Utkir A Rozikov
Cover of the book The Challenges of Governance in a Complex World by Utkir A Rozikov
Cover of the book Statistical Mechanics Made Simple by Utkir A Rozikov
Cover of the book Energy Security and Geopolitics in the Arctic by Utkir A Rozikov
Cover of the book From the Sun to the Stars by Utkir A Rozikov
Cover of the book Mathematics Education in Korea by Utkir A Rozikov
Cover of the book Developing Countries in the World Economy by Utkir A Rozikov
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy