An Introduction to Non-Perturbative Foundations of Quantum Field Theory

Nonfiction, Science & Nature, Science, Biological Sciences, Molecular Physics, Physics, Quantum Theory
Cover of the book An Introduction to Non-Perturbative Foundations of Quantum Field Theory by Franco Strocchi, OUP Oxford
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Franco Strocchi ISBN: 9780191651342
Publisher: OUP Oxford Publication: February 14, 2013
Imprint: OUP Oxford Language: English
Author: Franco Strocchi
ISBN: 9780191651342
Publisher: OUP Oxford
Publication: February 14, 2013
Imprint: OUP Oxford
Language: English

Quantum Field Theory (QFT) has proved to be the most useful strategy for the description of elementary particle interactions and as such is regarded as a fundamental part of modern theoretical physics. In most presentations, the emphasis is on the effectiveness of the theory in producing experimentally testable predictions, which at present essentially means Perturbative QFT. However, after more than fifty years of QFT, we still are in the embarrassing situation of not knowing a single non-trivial (even non-realistic) model of QFT in 3+1 dimensions, allowing a non-perturbative control. As a reaction to these consistency problems one may take the position that they are related to our ignorance of the physics of small distances and that QFT is only an effective theory, so that radically new ideas are needed for a consistent quantum theory of relativistic interactions (in 3+1 dimensions). The book starts by discussing the conflict between locality or hyperbolicity and positivity of the energy for relativistic wave equations, which marks the origin of quantum field theory, and the mathematical problems of the perturbative expansion (canonical quantization, interaction picture, non-Fock representation, asymptotic convergence of the series etc.). The general physical principles of positivity of the energy, Poincare' covariance and locality provide a substitute for canonical quantization, qualify the non-perturbative foundation and lead to very relevant results, like the Spin-statistics theorem, TCP symmetry, a substitute for canonical quantization, non-canonical behaviour, the euclidean formulation at the basis of the functional integral approach, the non-perturbative definition of the S-matrix (LSZ, Haag-Ruelle-Buchholz theory). A characteristic feature of gauge field theories is Gauss' law constraint. It is responsible for the conflict between locality of the charged fields and positivity, it yields the superselection of the (unbroken) gauge charges, provides a non-perturbative explanation of the Higgs mechanism in the local gauges, implies the infraparticle structure of the charged particles in QED and the breaking of the Lorentz group in the charged sectors. A non-perturbative proof of the Higgs mechanism is discussed in the Coulomb gauge: the vector bosons corresponding to the broken generators are massive and their two point function dominates the Goldstone spectrum, thus excluding the occurrence of massless Goldstone bosons. The solution of the U(1) problem in QCD, the theta vacuum structure and the inevitable breaking of the chiral symmetry in each theta sector are derived solely from the topology of the gauge group, without relying on the semiclassical instanton approximation.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Quantum Field Theory (QFT) has proved to be the most useful strategy for the description of elementary particle interactions and as such is regarded as a fundamental part of modern theoretical physics. In most presentations, the emphasis is on the effectiveness of the theory in producing experimentally testable predictions, which at present essentially means Perturbative QFT. However, after more than fifty years of QFT, we still are in the embarrassing situation of not knowing a single non-trivial (even non-realistic) model of QFT in 3+1 dimensions, allowing a non-perturbative control. As a reaction to these consistency problems one may take the position that they are related to our ignorance of the physics of small distances and that QFT is only an effective theory, so that radically new ideas are needed for a consistent quantum theory of relativistic interactions (in 3+1 dimensions). The book starts by discussing the conflict between locality or hyperbolicity and positivity of the energy for relativistic wave equations, which marks the origin of quantum field theory, and the mathematical problems of the perturbative expansion (canonical quantization, interaction picture, non-Fock representation, asymptotic convergence of the series etc.). The general physical principles of positivity of the energy, Poincare' covariance and locality provide a substitute for canonical quantization, qualify the non-perturbative foundation and lead to very relevant results, like the Spin-statistics theorem, TCP symmetry, a substitute for canonical quantization, non-canonical behaviour, the euclidean formulation at the basis of the functional integral approach, the non-perturbative definition of the S-matrix (LSZ, Haag-Ruelle-Buchholz theory). A characteristic feature of gauge field theories is Gauss' law constraint. It is responsible for the conflict between locality of the charged fields and positivity, it yields the superselection of the (unbroken) gauge charges, provides a non-perturbative explanation of the Higgs mechanism in the local gauges, implies the infraparticle structure of the charged particles in QED and the breaking of the Lorentz group in the charged sectors. A non-perturbative proof of the Higgs mechanism is discussed in the Coulomb gauge: the vector bosons corresponding to the broken generators are massive and their two point function dominates the Goldstone spectrum, thus excluding the occurrence of massless Goldstone bosons. The solution of the U(1) problem in QCD, the theta vacuum structure and the inevitable breaking of the chiral symmetry in each theta sector are derived solely from the topology of the gauge group, without relying on the semiclassical instanton approximation.

More books from OUP Oxford

Cover of the book International Trust Disputes by Franco Strocchi
Cover of the book Math Hysteria by Franco Strocchi
Cover of the book Pride and Prejudice by Franco Strocchi
Cover of the book A Better Way of Doing Business? by Franco Strocchi
Cover of the book Ovid's Presence in Contemporary Women's Writing by Franco Strocchi
Cover of the book Principles of Financial Regulation by Franco Strocchi
Cover of the book Europeanism by Franco Strocchi
Cover of the book The Lives of the Poets by Franco Strocchi
Cover of the book Dull Disasters? by Franco Strocchi
Cover of the book The EC Regulation on Insolvency Proceedings: A Commentary and Annotated Guide by Franco Strocchi
Cover of the book Islam and the European Empires by Franco Strocchi
Cover of the book The Oxford Companion to Fairy Tales by Franco Strocchi
Cover of the book Disobeying the Security Council by Franco Strocchi
Cover of the book Bad Queen Bess? by Franco Strocchi
Cover of the book Oxford Modern English Grammar by Franco Strocchi
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy