An Introductory Course in Computational Neuroscience

Nonfiction, Health & Well Being, Psychology, Cognitive Psychology, Science & Nature, Science, Biological Sciences
Cover of the book An Introductory Course in Computational Neuroscience by Paul Miller, The MIT Press
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Paul Miller ISBN: 9780262347563
Publisher: The MIT Press Publication: September 14, 2018
Imprint: The MIT Press Language: English
Author: Paul Miller
ISBN: 9780262347563
Publisher: The MIT Press
Publication: September 14, 2018
Imprint: The MIT Press
Language: English

A textbook for students with limited background in mathematics and computer coding, emphasizing computer tutorials that guide readers in producing models of neural behavior.

This introductory text teaches students to understand, simulate, and analyze the complex behaviors of individual neurons and brain circuits. It is built around computer tutorials that guide students in producing models of neural behavior, with the associated Matlab code freely available online. From these models students learn how individual neurons function and how, when connected, neurons cooperate in a circuit. The book demonstrates through simulated models how oscillations, multistability, post-stimulus rebounds, and chaos can arise within either single neurons or circuits, and it explores their roles in the brain.

The book first presents essential background in neuroscience, physics, mathematics, and Matlab, with explanations illustrated by many example problems. Subsequent chapters cover the neuron and spike production; single spike trains and the underlying cognitive processes; conductance-based models; the simulation of synaptic connections; firing-rate models of large-scale circuit operation; dynamical systems and their components; synaptic plasticity; and techniques for analysis of neuron population datasets, including principal components analysis, hidden Markov modeling, and Bayesian decoding.

Accessible to undergraduates in life sciences with limited background in mathematics and computer coding, the book can be used in a “flipped” or “inverted” teaching approach, with class time devoted to hands-on work on the computer tutorials. It can also be a resource for graduate students in the life sciences who wish to gain computing skills and a deeper knowledge of neural function and neural circuits.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

A textbook for students with limited background in mathematics and computer coding, emphasizing computer tutorials that guide readers in producing models of neural behavior.

This introductory text teaches students to understand, simulate, and analyze the complex behaviors of individual neurons and brain circuits. It is built around computer tutorials that guide students in producing models of neural behavior, with the associated Matlab code freely available online. From these models students learn how individual neurons function and how, when connected, neurons cooperate in a circuit. The book demonstrates through simulated models how oscillations, multistability, post-stimulus rebounds, and chaos can arise within either single neurons or circuits, and it explores their roles in the brain.

The book first presents essential background in neuroscience, physics, mathematics, and Matlab, with explanations illustrated by many example problems. Subsequent chapters cover the neuron and spike production; single spike trains and the underlying cognitive processes; conductance-based models; the simulation of synaptic connections; firing-rate models of large-scale circuit operation; dynamical systems and their components; synaptic plasticity; and techniques for analysis of neuron population datasets, including principal components analysis, hidden Markov modeling, and Bayesian decoding.

Accessible to undergraduates in life sciences with limited background in mathematics and computer coding, the book can be used in a “flipped” or “inverted” teaching approach, with class time devoted to hands-on work on the computer tutorials. It can also be a resource for graduate students in the life sciences who wish to gain computing skills and a deeper knowledge of neural function and neural circuits.

More books from The MIT Press

Cover of the book The The Simple Science of Flight by Paul Miller
Cover of the book Infrastructural Ecologies by Paul Miller
Cover of the book The Monumental Challenge of Preservation by Paul Miller
Cover of the book Extremism by Paul Miller
Cover of the book Toward A Minor Architecture by Paul Miller
Cover of the book Harvesting the Biosphere by Paul Miller
Cover of the book Hermeneutica by Paul Miller
Cover of the book The End of Ownership by Paul Miller
Cover of the book Giving Voice by Paul Miller
Cover of the book Why Humans Matter More Than Ever by Paul Miller
Cover of the book Beyond Imported Magic by Paul Miller
Cover of the book The Discipline of Organizing by Paul Miller
Cover of the book For Fun and Profit by Paul Miller
Cover of the book Flash by Paul Miller
Cover of the book Paul Lauterbur and the Invention of MRI by Paul Miller
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy