Bifurcation Theory for Hexagonal Agglomeration in Economic Geography

Nonfiction, Science & Nature, Science, Other Sciences, System Theory, Mathematics, Applied, Technology
Cover of the book Bifurcation Theory for Hexagonal Agglomeration in Economic Geography by Kiyohiro Ikeda, Kazuo Murota, Springer Japan
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Kiyohiro Ikeda, Kazuo Murota ISBN: 9784431542582
Publisher: Springer Japan Publication: November 8, 2013
Imprint: Springer Language: English
Author: Kiyohiro Ikeda, Kazuo Murota
ISBN: 9784431542582
Publisher: Springer Japan
Publication: November 8, 2013
Imprint: Springer
Language: English

This book contributes to an understanding of how bifurcation theory adapts to the analysis of economic geography. It is easily accessible not only to mathematicians and economists, but also to upper-level undergraduate and graduate students who are interested in nonlinear mathematics. The self-organization of hexagonal agglomeration patterns of industrial regions was first predicted by the central place theory in economic geography based on investigations of southern Germany. The emergence of hexagonal agglomeration in economic geography models was envisaged by Krugman. In this book, after a brief introduction of central place theory and new economic geography, the missing link between them is discovered by elucidating the mechanism of the evolution of bifurcating hexagonal patterns. Pattern formation by such bifurcation is a well-studied topic in nonlinear mathematics, and group-theoretic bifurcation analysis is a well-developed theoretical tool. A finite hexagonal lattice is used to express uniformly distributed places, and the symmetry of this lattice is expressed by a finite group. Several mathematical methodologies indispensable for tackling the present problem are gathered in a self-contained manner. The existence of hexagonal distributions is verified by group-theoretic bifurcation analysis, first by applying the so-called equivariant branching lemma and next by solving the bifurcation equation. This book offers a complete guide for the application of group-theoretic bifurcation analysis to economic agglomeration on the hexagonal lattice.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book contributes to an understanding of how bifurcation theory adapts to the analysis of economic geography. It is easily accessible not only to mathematicians and economists, but also to upper-level undergraduate and graduate students who are interested in nonlinear mathematics. The self-organization of hexagonal agglomeration patterns of industrial regions was first predicted by the central place theory in economic geography based on investigations of southern Germany. The emergence of hexagonal agglomeration in economic geography models was envisaged by Krugman. In this book, after a brief introduction of central place theory and new economic geography, the missing link between them is discovered by elucidating the mechanism of the evolution of bifurcating hexagonal patterns. Pattern formation by such bifurcation is a well-studied topic in nonlinear mathematics, and group-theoretic bifurcation analysis is a well-developed theoretical tool. A finite hexagonal lattice is used to express uniformly distributed places, and the symmetry of this lattice is expressed by a finite group. Several mathematical methodologies indispensable for tackling the present problem are gathered in a self-contained manner. The existence of hexagonal distributions is verified by group-theoretic bifurcation analysis, first by applying the so-called equivariant branching lemma and next by solving the bifurcation equation. This book offers a complete guide for the application of group-theoretic bifurcation analysis to economic agglomeration on the hexagonal lattice.

More books from Springer Japan

Cover of the book Cardio-aortic and Aortic Surgery by Kiyohiro Ikeda, Kazuo Murota
Cover of the book Recent Progress in Child and Adolescent Psychiatry by Kiyohiro Ikeda, Kazuo Murota
Cover of the book D-Amino Acids by Kiyohiro Ikeda, Kazuo Murota
Cover of the book Symmetry and Economic Invariance by Kiyohiro Ikeda, Kazuo Murota
Cover of the book Asian Perspectives and Evidence on Health Promotion and Education by Kiyohiro Ikeda, Kazuo Murota
Cover of the book Mathematical Fluid Dynamics, Present and Future by Kiyohiro Ikeda, Kazuo Murota
Cover of the book The Dilemma of Boundaries by Kiyohiro Ikeda, Kazuo Murota
Cover of the book The Limit Shape Problem for Ensembles of Young Diagrams by Kiyohiro Ikeda, Kazuo Murota
Cover of the book Thermodynamics of Information Processing in Small Systems by Kiyohiro Ikeda, Kazuo Murota
Cover of the book Cerebrospinal Vascular Diseases by Kiyohiro Ikeda, Kazuo Murota
Cover of the book Mountain Hazards and Disaster Risk Reduction by Kiyohiro Ikeda, Kazuo Murota
Cover of the book Geomorphology and Society by Kiyohiro Ikeda, Kazuo Murota
Cover of the book Emotions of Animals and Humans by Kiyohiro Ikeda, Kazuo Murota
Cover of the book Computer Aided Surgery by Kiyohiro Ikeda, Kazuo Murota
Cover of the book Suzaku Studies of White Dwarf Stars and the Galactic X-ray Background Emission by Kiyohiro Ikeda, Kazuo Murota
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy