Big-Data Analytics for Cloud, IoT and Cognitive Computing

Nonfiction, Computers, General Computing
Cover of the book Big-Data Analytics for Cloud, IoT and Cognitive Computing by Kai Hwang, Min Chen, Wiley
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Kai Hwang, Min Chen ISBN: 9781119247296
Publisher: Wiley Publication: March 17, 2017
Imprint: Wiley Language: English
Author: Kai Hwang, Min Chen
ISBN: 9781119247296
Publisher: Wiley
Publication: March 17, 2017
Imprint: Wiley
Language: English

The definitive guide to successfully integrating social, mobile, Big-Data analytics, cloud and IoT principles and technologies

The main goal of this book is to spur the development of effective big-data computing operations on smart clouds that are fully supported by IoT sensing, machine learning and analytics systems. To that end, the authors draw upon their original research and proven track record in the field to describe a practical approach integrating big-data theories, cloud design principles, Internet of Things (IoT) sensing, machine learning, data analytics and Hadoop and Spark programming.

Part 1 focuses on data science, the roles of clouds and IoT devices and frameworks for big-data computing. Big data analytics and cognitive machine learning, as well as cloud architecture, IoT and cognitive systems are explored, and mobile cloud-IoT-interaction frameworks are illustrated with concrete system design examples. Part 2 is devoted to the principles of and algorithms for machine learning, data analytics and deep learning in big data applications. Part 3 concentrates on cloud programming software libraries from MapReduce to Hadoop, Spark and TensorFlow and describes business, educational, healthcare and social media applications for those tools.

  • The first book describing a practical approach to integrating social, mobile, analytics, cloud and IoT (SMACT) principles and technologies
  • Covers theory and computing techniques and technologies, making it suitable for use in both computer science and electrical engineering programs
  • Offers an extremely well-informed vision of future intelligent and cognitive computing environments integrating SMACT technologies
  • Fully illustrated throughout with examples, figures and approximately 150 problems to support and reinforce learning
  • Features a companion website with an instructor manual and PowerPoint slides www.wiley.com/go/hwangIOT

Big-Data Analytics for Cloud, IoT and Cognitive Computing satisfies the demand among university faculty and students for cutting-edge information on emerging intelligent and cognitive computing systems and technologies. Professionals working in data science, cloud computing and IoT applications will also find this book to be an extremely useful working resource.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The definitive guide to successfully integrating social, mobile, Big-Data analytics, cloud and IoT principles and technologies

The main goal of this book is to spur the development of effective big-data computing operations on smart clouds that are fully supported by IoT sensing, machine learning and analytics systems. To that end, the authors draw upon their original research and proven track record in the field to describe a practical approach integrating big-data theories, cloud design principles, Internet of Things (IoT) sensing, machine learning, data analytics and Hadoop and Spark programming.

Part 1 focuses on data science, the roles of clouds and IoT devices and frameworks for big-data computing. Big data analytics and cognitive machine learning, as well as cloud architecture, IoT and cognitive systems are explored, and mobile cloud-IoT-interaction frameworks are illustrated with concrete system design examples. Part 2 is devoted to the principles of and algorithms for machine learning, data analytics and deep learning in big data applications. Part 3 concentrates on cloud programming software libraries from MapReduce to Hadoop, Spark and TensorFlow and describes business, educational, healthcare and social media applications for those tools.

Big-Data Analytics for Cloud, IoT and Cognitive Computing satisfies the demand among university faculty and students for cutting-edge information on emerging intelligent and cognitive computing systems and technologies. Professionals working in data science, cloud computing and IoT applications will also find this book to be an extremely useful working resource.

More books from Wiley

Cover of the book Extreme Events by Kai Hwang, Min Chen
Cover of the book Psychological Science Under Scrutiny by Kai Hwang, Min Chen
Cover of the book Finance by Kai Hwang, Min Chen
Cover of the book Fluid Dynamics in Complex Fractured-Porous Systems by Kai Hwang, Min Chen
Cover of the book Self Made Me by Kai Hwang, Min Chen
Cover of the book Keynes and the Market by Kai Hwang, Min Chen
Cover of the book Cloud Computing by Kai Hwang, Min Chen
Cover of the book Fundamentals of Big Data Network Analysis for Research and Industry by Kai Hwang, Min Chen
Cover of the book Dried Blood Spots by Kai Hwang, Min Chen
Cover of the book Domesticating Neo-Liberalism by Kai Hwang, Min Chen
Cover of the book Advances in High Temperature Ceramic Matrix Composites and Materials for Sustainable Development by Kai Hwang, Min Chen
Cover of the book Climate Dynamics by Kai Hwang, Min Chen
Cover of the book Integrated Membrane Systems and Processes by Kai Hwang, Min Chen
Cover of the book Counseling About Cancer by Kai Hwang, Min Chen
Cover of the book The Big Data-Driven Business by Kai Hwang, Min Chen
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy