Biology, Controls and Models of Tree Volatile Organic Compound Emissions

Nonfiction, Science & Nature, Nature, Plant Life, Trees, Science, Biological Sciences, Botany, Technology
Cover of the book Biology, Controls and Models of Tree Volatile Organic Compound Emissions by , Springer Netherlands
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9789400766068
Publisher: Springer Netherlands Publication: July 8, 2013
Imprint: Springer Language: English
Author:
ISBN: 9789400766068
Publisher: Springer Netherlands
Publication: July 8, 2013
Imprint: Springer
Language: English

Plant-driven volatile organic compound (BVOC) emissions play a major role in atmospheric chemistry, including ozone and photochemical smog formation in the troposphere, and they extend the atmospheric lifetime of the key greenhouse gas, methane. Furthermore, condensation of photo-oxidation products of BVOCs leads to formation of secondary organic aerosols with profound implications for the earth's solar radiation budget and climate. Trees represent the plant life form that most contributes to BVOC emissions, which gives global forests a unique role in regulating atmospheric chemistry.
Written by leading experts in the field, the focus is on recent advancements in understanding the controls on plant-driven BVOC emissions, including efforts to quantitatively predict emissions using computer models, particularly on elicitation of emissions under biotic and abiotic stresses, molecular mechanisms of volatile synthesis and emission and the role of emissions in plant stress tolerance.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Plant-driven volatile organic compound (BVOC) emissions play a major role in atmospheric chemistry, including ozone and photochemical smog formation in the troposphere, and they extend the atmospheric lifetime of the key greenhouse gas, methane. Furthermore, condensation of photo-oxidation products of BVOCs leads to formation of secondary organic aerosols with profound implications for the earth's solar radiation budget and climate. Trees represent the plant life form that most contributes to BVOC emissions, which gives global forests a unique role in regulating atmospheric chemistry.
Written by leading experts in the field, the focus is on recent advancements in understanding the controls on plant-driven BVOC emissions, including efforts to quantitatively predict emissions using computer models, particularly on elicitation of emissions under biotic and abiotic stresses, molecular mechanisms of volatile synthesis and emission and the role of emissions in plant stress tolerance.

More books from Springer Netherlands

Cover of the book Management of Renal Hypertension by
Cover of the book The Fertility Transition in Iran by
Cover of the book Predation by
Cover of the book Higher Education: Handbook of Theory and Research by
Cover of the book Basement Tectonics 9 by
Cover of the book Application of Nature Based Algorithm in Natural Resource Management by
Cover of the book Digestive Physiology and Metabolism in Ruminants by
Cover of the book High Mobility and Quantum Well Transistors by
Cover of the book Economics of Climate Change: The Contribution of Forestry Projects by
Cover of the book Advanced Mathematical Thinking by
Cover of the book Infections in the Elderly by
Cover of the book Fundamental and Applied Nano-Electromagnetics II by
Cover of the book Economic Modeling of Water by
Cover of the book Nutraceuticals and Cancer by
Cover of the book Sustainable Livelihood Approach by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy