Biopower Technical Strategy Workshop: Challenges to Expanded Use of Biopower, Technology Research, Feedstocks, Market Transformation

Nonfiction, Science & Nature, Science, Physics, Energy, Technology, Agriculture & Animal Husbandry
Cover of the book Biopower Technical Strategy Workshop: Challenges to Expanded Use of Biopower, Technology Research, Feedstocks, Market Transformation by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781466161450
Publisher: Progressive Management Publication: March 9, 2012
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781466161450
Publisher: Progressive Management
Publication: March 9, 2012
Imprint: Smashwords Edition
Language: English

This report, converted for accurate flowing-text ebook format reproduction, summarizes the results of a workshop sponsored by the DOE/EERE Biomass Program in Denver, Colorado, on December 2-3, 2009. The workshop was convened to identify and discuss challenges to the expanded use of biopower and the possible solutions, including technology research, development, and demonstration (RD&D) as well as policies and other market transformation mechanisms. Topics covered include woody biomass, animal waste, landfill gas; direct firing, combined heat and power (CHP), cofiring, gasification, pyrolysis, torrefaction, anaerobic digestion, large-scale systems, and more.

Contents: Introduction * Current State of the Biopower Industry * Pretreatment and Conversion Technologies * Large-Scale Systems * Smaller-Scale Systems * Feedstocks for Biopower * Market Transformation and Other Actions * Cross-cutting Themes

Today, other than hydroelectricity, biopower is the largest source of renewable electricity in the world and accounts for more power generation than wind and solar combined. Globally, most biopower today is generated from solid biomass (e.g., wood) with smaller amounts from biogas, municipal solid waste (MSW), and biofuels (IEA 2007). In 2008, the net summer capacity of the U.S. biopower industry, which contributes about $10 billion to the economy annually, was approximately 11,050 megawatts (MW), including wood, landfill gas, MSW, and other waste biomass (EIA 2010). Most of today's biopower plants are direct-fired systems producing 50 MW or less of electricity. Plants are owned and operated by a wide range of stakeholders, from industrial users (e.g., pulp and paper mills and lumber companies), to utilities, independent power producers, and small-scale community users (e.g., institutional users). Independent power producers and industrial combined heat and power (CHP) facilities account for about 83% of net biomass summer generating capacity.

Biopower is a fairly mature technology with hundreds of successful commercial-scale operations. Many technologies are potentially available to transform raw biomass material directly or indirectly into electricity, including direct firing, cofiring of biomass with coal or natural gas, gasification, pyrolysis, torrefaction, pelletization, and anaerobic digestion. These technologies are in various stages of development and use. Over 50% of biopower facilities are utilizing higher-efficiency CHP systems to provide both heat and power.

Despite the benefits of biopower and the compelling economic and environmental drivers, there are still significant barriers to the realization of a widespread, sustainable U.S. biopower industry. Some of the major challenges today include ensuring the availability of a sustainable biomass supply, improving the efficiency and cost of conversion technologies, exploring more cost-effective ways to utilize biomass (e.g., advanced pretreatment), and addressing the economic and other ramifications of an uncertain policy and regulatory climate (e.g., carbon, environment, permitting, and RPS).

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This report, converted for accurate flowing-text ebook format reproduction, summarizes the results of a workshop sponsored by the DOE/EERE Biomass Program in Denver, Colorado, on December 2-3, 2009. The workshop was convened to identify and discuss challenges to the expanded use of biopower and the possible solutions, including technology research, development, and demonstration (RD&D) as well as policies and other market transformation mechanisms. Topics covered include woody biomass, animal waste, landfill gas; direct firing, combined heat and power (CHP), cofiring, gasification, pyrolysis, torrefaction, anaerobic digestion, large-scale systems, and more.

Contents: Introduction * Current State of the Biopower Industry * Pretreatment and Conversion Technologies * Large-Scale Systems * Smaller-Scale Systems * Feedstocks for Biopower * Market Transformation and Other Actions * Cross-cutting Themes

Today, other than hydroelectricity, biopower is the largest source of renewable electricity in the world and accounts for more power generation than wind and solar combined. Globally, most biopower today is generated from solid biomass (e.g., wood) with smaller amounts from biogas, municipal solid waste (MSW), and biofuels (IEA 2007). In 2008, the net summer capacity of the U.S. biopower industry, which contributes about $10 billion to the economy annually, was approximately 11,050 megawatts (MW), including wood, landfill gas, MSW, and other waste biomass (EIA 2010). Most of today's biopower plants are direct-fired systems producing 50 MW or less of electricity. Plants are owned and operated by a wide range of stakeholders, from industrial users (e.g., pulp and paper mills and lumber companies), to utilities, independent power producers, and small-scale community users (e.g., institutional users). Independent power producers and industrial combined heat and power (CHP) facilities account for about 83% of net biomass summer generating capacity.

Biopower is a fairly mature technology with hundreds of successful commercial-scale operations. Many technologies are potentially available to transform raw biomass material directly or indirectly into electricity, including direct firing, cofiring of biomass with coal or natural gas, gasification, pyrolysis, torrefaction, pelletization, and anaerobic digestion. These technologies are in various stages of development and use. Over 50% of biopower facilities are utilizing higher-efficiency CHP systems to provide both heat and power.

Despite the benefits of biopower and the compelling economic and environmental drivers, there are still significant barriers to the realization of a widespread, sustainable U.S. biopower industry. Some of the major challenges today include ensuring the availability of a sustainable biomass supply, improving the efficiency and cost of conversion technologies, exploring more cost-effective ways to utilize biomass (e.g., advanced pretreatment), and addressing the economic and other ramifications of an uncertain policy and regulatory climate (e.g., carbon, environment, permitting, and RPS).

More books from Progressive Management

Cover of the book NASA Report: Independent Review Team Orbital Sciences ATK ISS Space Station Resupply Orb-3 Cygnus Antares Rocket Failure Accident Investigation Report, October 2014 Event, Wallops MARS Launch Site by Progressive Management
Cover of the book The PLA at Home and Abroad: Assessing the Operational Capabilities of China's Military - Uyghurs, Spratly and Senkaku Islands, Tibet, Domestic Riots, Taiwan, Chinese-Russian Exercises by Progressive Management
Cover of the book 21st Century FEMA Study Course: Introduction to Residential Coastal Construction (IS-386) - Beach Nourishment and Replenishment, Flood and Wind, Codes and Siting, Wildfires, Tsunami and Hurricane by Progressive Management
Cover of the book U.S. Air Force Aerospace Mishap Reports: Accident Investigation Boards for the E-4B Nightwatch Advanced Airborne Command Post, F-15C Eagle Fighter, QF-4E and QRF-4C Target Drones by Progressive Management
Cover of the book Breaking Through the Tension: The Operational Art of Special Operations in Phase Zero - Special Operations Forces (SOF) During Pre-Crisis Peacetime Conditions, Theory and Doctrine, Framework by Progressive Management
Cover of the book 2014 American Arctic Strategy: Russia and China, Minerals and Resources, Recoverable Oil in the Arctic Circle, Arctic Militarization, Freedom of Navigation, Sea Lines of Communication by Progressive Management
Cover of the book To Join or Not to Join the Nuclear Club: How Nations Think about Nuclear Weapons: Two Middle East Case Studies - Libya and Pakistan by Progressive Management
Cover of the book Decisive Force: Strategic Bombing in the Gulf War - Desert Storm, Post-Vietnam Technology and Doctrine Changes, F-117A Stealth Fighter, E-3 AWACS, General Horner, Scud Missiles, Baghdad Attacks by Progressive Management
Cover of the book FBI Report: National Gang Threat Assessment (NGTA) Emerging Trends - Street Gangs, Drug Cartels, Regional and State Breakdowns, Expansion of Non-Traditional Gangs by Progressive Management
Cover of the book Defense Is From Mars, State Is From Venus: Improving Communications and Promoting National Security - Covering Peacekeeping, Foreign Policy, and the Character Traits of Military Officers and Diplomats by Progressive Management
Cover of the book Apollo Medical Operations Project: Recommendations to Improve Crew Health and Performance for Future Exploration Missions and Lunar Surface Operations - EVA, Food, Hygiene, Illness, Radiation Issues by Progressive Management
Cover of the book Extending the Operational Life of the International Space Station (ISS) Until 2024 - Overly Optimistic Cost Projections, Technical Risks and Issues, Human Health Issues, Cargo Transport, Solar Panels by Progressive Management
Cover of the book Liberating Kuwait: U.S. Marines in the Gulf War, 1990-1991, Iraq's Saddam Hussein and the Invasion of Kuwait, Defending Saudi Arabia, Air War, Scuds, al-Khafji, Harriers Afloat, Fratricide Issues by Progressive Management
Cover of the book 21st Century Adult Cancer Sourcebook: Small Cell Lung Cancer (SCLC) - Clinical Data for Patients, Families, and Physicians by Progressive Management
Cover of the book U. S. Intelligence Community Reports: WMD Acquisition, Information Sharing, Overview of National Intelligence, National Counterintelligence Executive Strategy, President's Surveillance Program by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy