Carbon Materials for Advanced Technologies

Nonfiction, Science & Nature, Science, Chemistry, Physical & Theoretical, Technology, Material Science
Cover of the book Carbon Materials for Advanced Technologies by , Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780080528540
Publisher: Elsevier Science Publication: July 22, 1999
Imprint: Elsevier Science Language: English
Author:
ISBN: 9780080528540
Publisher: Elsevier Science
Publication: July 22, 1999
Imprint: Elsevier Science
Language: English

The inspiration for this book came from an American Carbon Society Workshop entitled "Carbon Materials for Advanced Technologies" which was hosted by the Oak Ridge National Laboratory in 1994. Chapter 1 contains a review of carbon materials, and emphasizes the structure and chemical bonding in the various forms of carbon, including the four allotropes diamond, graphite, carbynes, and the fullerenes. In addition, amorphous carbon and diamond films, carbon nanoparticles, and engineered carbons are discussed. The most recently discovered allotrope of carbon, i.e., the fullerenes, along with carbon nanotubes, are more fully discussed in Chapter 2, where their structure-property relations are reviewed in the context of advanced technologies for carbon based materials. The synthesis, structure, and properties of the fullerenes and nanotubes, and modification of the structure and properties through doping, are also reviewed. Potential applications of this new family of carbon materials are considered. The manufacture and applications of adsorbent carbon fibers are discussed in Chapter 3. The manufacture, structure and properties of high performance fibers are reviewed in Chapter 4, and the manufacture and properties of vapor grown fibers and their composites are reported in Chapter 5. The properties and applications of novel low density composites developed at Oak Ridge National Laboratory are reported in Chapter 6. Coal is an important source of energy and an abundant source of carbon. The production of engineering carbons and graphite from coal via a solvent extraction route is described in Chapter 7. Applications of activated carbons are discussed in Chapters 8-10, including their use in the automotive arena as evaporative loss emission traps (Chapter 8), and in vehicle natural gas storage tanks (Chapter 9). The application of activated carbons in adsorption heat pumps and refrigerators is discussed in Chapter 10. Chapter 11 reports the use of carbon materials in the fast growing consumer electronics application of lithium-ion batteries. The role of carbon materials in nuclear systems is discussed in Chapters 12 and 13, where fusion device and fission reactor applications, respectively, are reviewed. In Chapter 12 the major technological issues for the utilization of carbon as a plasma facing material are discussed in the context of current and future fusion tokamak devices. The essential design features of graphite moderated reactors, (including gas-, water- and molten salt-cooled systems) are reviewed in Chapter 13, and reactor environmental effects such as radiation damage and radiolytic corrosion are discussed. The fracture behaviour of graphite is discussed in qualitative and quantitative terms in Chapter 14. The applications of Linear Elastic Fracture Mechanics and Elastic-Plastic Fracture Mechanics to graphite are reviewed and a study of the role of small flaws in nuclear graphites is reported.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The inspiration for this book came from an American Carbon Society Workshop entitled "Carbon Materials for Advanced Technologies" which was hosted by the Oak Ridge National Laboratory in 1994. Chapter 1 contains a review of carbon materials, and emphasizes the structure and chemical bonding in the various forms of carbon, including the four allotropes diamond, graphite, carbynes, and the fullerenes. In addition, amorphous carbon and diamond films, carbon nanoparticles, and engineered carbons are discussed. The most recently discovered allotrope of carbon, i.e., the fullerenes, along with carbon nanotubes, are more fully discussed in Chapter 2, where their structure-property relations are reviewed in the context of advanced technologies for carbon based materials. The synthesis, structure, and properties of the fullerenes and nanotubes, and modification of the structure and properties through doping, are also reviewed. Potential applications of this new family of carbon materials are considered. The manufacture and applications of adsorbent carbon fibers are discussed in Chapter 3. The manufacture, structure and properties of high performance fibers are reviewed in Chapter 4, and the manufacture and properties of vapor grown fibers and their composites are reported in Chapter 5. The properties and applications of novel low density composites developed at Oak Ridge National Laboratory are reported in Chapter 6. Coal is an important source of energy and an abundant source of carbon. The production of engineering carbons and graphite from coal via a solvent extraction route is described in Chapter 7. Applications of activated carbons are discussed in Chapters 8-10, including their use in the automotive arena as evaporative loss emission traps (Chapter 8), and in vehicle natural gas storage tanks (Chapter 9). The application of activated carbons in adsorption heat pumps and refrigerators is discussed in Chapter 10. Chapter 11 reports the use of carbon materials in the fast growing consumer electronics application of lithium-ion batteries. The role of carbon materials in nuclear systems is discussed in Chapters 12 and 13, where fusion device and fission reactor applications, respectively, are reviewed. In Chapter 12 the major technological issues for the utilization of carbon as a plasma facing material are discussed in the context of current and future fusion tokamak devices. The essential design features of graphite moderated reactors, (including gas-, water- and molten salt-cooled systems) are reviewed in Chapter 13, and reactor environmental effects such as radiation damage and radiolytic corrosion are discussed. The fracture behaviour of graphite is discussed in qualitative and quantitative terms in Chapter 14. The applications of Linear Elastic Fracture Mechanics and Elastic-Plastic Fracture Mechanics to graphite are reviewed and a study of the role of small flaws in nuclear graphites is reported.

More books from Elsevier Science

Cover of the book Progress in Heterocyclic Chemistry by
Cover of the book Management of Hemostasis and Coagulopathies for Surgical and Critically Ill Patients by
Cover of the book Advanced Welding Processes by
Cover of the book Ethics and Professionalism in Forensic Anthropology by
Cover of the book Laboratory Methods in Enzymology: Protein Part C by
Cover of the book Handbook of Textile and Industrial Dyeing by
Cover of the book Closed Loop Neuroscience by
Cover of the book Introduction to Light Trapping in Solar Cell and Photo-detector Devices by
Cover of the book Cumulative Subject and Author Index Including Tables of Contents, Volumes 1-50 by
Cover of the book Multiaxial Fatigue and Fracture by
Cover of the book Postharvest Handling by
Cover of the book Hearing by
Cover of the book Structural Materials for Generation IV Nuclear Reactors by
Cover of the book Thermal Power Plant by
Cover of the book Finite Element Analysis with Error Estimators by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy