Complex Variables and the Laplace Transform for Engineers

Nonfiction, Science & Nature, Technology, Electronics
Cover of the book Complex Variables and the Laplace Transform for Engineers by Wilbur R. LePage, Dover Publications
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Wilbur R. LePage ISBN: 9780486136448
Publisher: Dover Publications Publication: April 26, 2012
Imprint: Dover Publications Language: English
Author: Wilbur R. LePage
ISBN: 9780486136448
Publisher: Dover Publications
Publication: April 26, 2012
Imprint: Dover Publications
Language: English

"An excellent text; the best I have found on the subject." — J. B. Sevart, Department of Mechanical Engineering, University of Wichita
"An extremely useful textbook for both formal classes and for self-study." — Society for Industrial and Applied Mathematics
Engineers often do not have time to take a course in complex variable theory as undergraduates, yet is is one of the most important and useful branches of mathematics, with many applications in engineering. This text is designed to remedy that need by supplying graduate engineering students (especially electrical engineering) with a course in the basic theory of complex variables, which in turn is essential to the understanding of transform theory. Presupposing a good knowledge of calculus, the book deals lucidly and rigorously with important mathematical concepts, striking an ideal balance between purely mathematical treatments that are too general for the engineer, and books of applied engineering which may fail to stress significant mathematical ideas.
The text is divided into two basic parts: The first part (Chapters 1–7) is devoted to the theory of complex variables and begins with an outline of the structure of system analysis and an explanation of basic mathematical and engineering terms. Chapter 2 treats the foundation of the theory of a complex variable, centered around the Cauchy-Riemann equations. The next three chapters — conformal mapping, complex integration, and infinite series — lead up to a particularly important chapter on multivalued functions, explaining the concepts of stability, branch points, and riemann surfaces. Numerous diagrams illustrate the physical applications of the mathematical concepts involved.
The second part (Chapters 8–16) covers Fourier and Laplace transform theory and some of its applications in engineering, beginning with a chapter on real integrals. Three important chapters follow on the Fourier integral, the Laplace integral (one-sided and two-sided) and convolution integrals. After a chapter on additional properties of the Laplace integral, the book ends with four chapters (13–16) on the application of transform theory to the solution of ordinary linear integrodifferential equations with constant coefficients, impulse functions, periodic functions, and the increasingly important Z transform.
Dr. LePage's book is unique in its coverage of an unusually broad range of topics difficult to find in a single volume, while at the same time stressing fundamental concepts, careful attention to details and correct use of terminology. An extensive selection of interesting and valuable problems follows each chapter, and an excellent bibliography recommends further reading. Ideal for home study or as the nucleus of a graduate course, this useful, practical, and popular (8 printings in its hardcover edition) text offers students, engineers, and researchers a careful, thorough grounding in the math essential to many areas of engineering. "An outstanding job." — American Mathematical Monthly

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

"An excellent text; the best I have found on the subject." — J. B. Sevart, Department of Mechanical Engineering, University of Wichita
"An extremely useful textbook for both formal classes and for self-study." — Society for Industrial and Applied Mathematics
Engineers often do not have time to take a course in complex variable theory as undergraduates, yet is is one of the most important and useful branches of mathematics, with many applications in engineering. This text is designed to remedy that need by supplying graduate engineering students (especially electrical engineering) with a course in the basic theory of complex variables, which in turn is essential to the understanding of transform theory. Presupposing a good knowledge of calculus, the book deals lucidly and rigorously with important mathematical concepts, striking an ideal balance between purely mathematical treatments that are too general for the engineer, and books of applied engineering which may fail to stress significant mathematical ideas.
The text is divided into two basic parts: The first part (Chapters 1–7) is devoted to the theory of complex variables and begins with an outline of the structure of system analysis and an explanation of basic mathematical and engineering terms. Chapter 2 treats the foundation of the theory of a complex variable, centered around the Cauchy-Riemann equations. The next three chapters — conformal mapping, complex integration, and infinite series — lead up to a particularly important chapter on multivalued functions, explaining the concepts of stability, branch points, and riemann surfaces. Numerous diagrams illustrate the physical applications of the mathematical concepts involved.
The second part (Chapters 8–16) covers Fourier and Laplace transform theory and some of its applications in engineering, beginning with a chapter on real integrals. Three important chapters follow on the Fourier integral, the Laplace integral (one-sided and two-sided) and convolution integrals. After a chapter on additional properties of the Laplace integral, the book ends with four chapters (13–16) on the application of transform theory to the solution of ordinary linear integrodifferential equations with constant coefficients, impulse functions, periodic functions, and the increasingly important Z transform.
Dr. LePage's book is unique in its coverage of an unusually broad range of topics difficult to find in a single volume, while at the same time stressing fundamental concepts, careful attention to details and correct use of terminology. An extensive selection of interesting and valuable problems follows each chapter, and an excellent bibliography recommends further reading. Ideal for home study or as the nucleus of a graduate course, this useful, practical, and popular (8 printings in its hardcover edition) text offers students, engineers, and researchers a careful, thorough grounding in the math essential to many areas of engineering. "An outstanding job." — American Mathematical Monthly

More books from Dover Publications

Cover of the book Basic Principles in Pianoforte Playing by Wilbur R. LePage
Cover of the book The Olympic Games by Wilbur R. LePage
Cover of the book Chinese Brushwork in Calligraphy and Painting by Wilbur R. LePage
Cover of the book Italic and Copperplate Calligraphy by Wilbur R. LePage
Cover of the book Gravity by Wilbur R. LePage
Cover of the book Art Alphabets, Monograms, and Lettering by Wilbur R. LePage
Cover of the book The Essential Marx by Wilbur R. LePage
Cover of the book Around the World in Eighty Days by Wilbur R. LePage
Cover of the book Lazarillo de Tormes (Dual-Language) by Wilbur R. LePage
Cover of the book The Enchanted Moccasins and Other Native American Legends by Wilbur R. LePage
Cover of the book The Way of the World by Wilbur R. LePage
Cover of the book Traditional Japanese Family Crests for Artists and Craftspeople by Wilbur R. LePage
Cover of the book Ghosts by Wilbur R. LePage
Cover of the book Titus Andronicus by Wilbur R. LePage
Cover of the book Chemical Magic by Wilbur R. LePage
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy