Author: | Francky Catthoor, K. Danckaert, K.K. Kulkarni, E. Brockmeyer, Per Gunnar Kjeldsberg, T. van Achteren, Thierry Omnes | ISBN: | 9781475749038 |
Publisher: | Springer US | Publication: | March 14, 2013 |
Imprint: | Springer | Language: | English |
Author: | Francky Catthoor, K. Danckaert, K.K. Kulkarni, E. Brockmeyer, Per Gunnar Kjeldsberg, T. van Achteren, Thierry Omnes |
ISBN: | 9781475749038 |
Publisher: | Springer US |
Publication: | March 14, 2013 |
Imprint: | Springer |
Language: | English |
Data Access and Storage Management for Embedded Programmable Processors gives an overview of the state-of-the-art in system-level data access and storage management for embedded programmable processors. The targeted application domain covers complex embedded real-time multi-media and communication applications. Many of these applications are data-dominated in the sense that their cost related aspects, namely power consumption and footprint are heavily influenced (if not dominated) by the data access and storage aspects. The material is mainly based on research at IMEC in this area in the period 1996-2001. In order to deal with the stringent timing requirements and the data dominated characteristics of this domain, we have adopted a target architecture style that is compatible with modern embedded processors, and we have developed a systematic step-wise methodology to make the exploration and optimization of such applications feasible in a source-to-source precompilation approach.
Data Access and Storage Management for Embedded Programmable Processors gives an overview of the state-of-the-art in system-level data access and storage management for embedded programmable processors. The targeted application domain covers complex embedded real-time multi-media and communication applications. Many of these applications are data-dominated in the sense that their cost related aspects, namely power consumption and footprint are heavily influenced (if not dominated) by the data access and storage aspects. The material is mainly based on research at IMEC in this area in the period 1996-2001. In order to deal with the stringent timing requirements and the data dominated characteristics of this domain, we have adopted a target architecture style that is compatible with modern embedded processors, and we have developed a systematic step-wise methodology to make the exploration and optimization of such applications feasible in a source-to-source precompilation approach.