Data Science Using Oracle Data Miner and Oracle R Enterprise

Transform Your Business Systems into an Analytical Powerhouse

Nonfiction, Computers, Database Management, Programming, Programming Languages, General Computing
Cover of the book Data Science Using Oracle Data Miner and Oracle R Enterprise by Sibanjan Das, Apress
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Sibanjan Das ISBN: 9781484226148
Publisher: Apress Publication: December 22, 2016
Imprint: Apress Language: English
Author: Sibanjan Das
ISBN: 9781484226148
Publisher: Apress
Publication: December 22, 2016
Imprint: Apress
Language: English

Automate the predictive analytics process using Oracle Data Miner and Oracle R Enterprise. This book talks about how both these technologies can provide a framework for in-database predictive analytics. You'll see a unified architecture and embedded workflow to automate various analytics steps such as data preprocessing, model creation, and storing final model output to tables.

You'll take a deep dive into various statistical models commonly used in businesses and how they can be automated for predictive analytics using various SQL, PLSQL, ORE, ODM, and native R packages. You'll get to know various options available in the ODM workflow for driving automation. Also, you'll get an understanding of various ways to integrate ODM packages, ORE, and native R packages using PLSQL for automating the processes.

*Data Science Automation Using *Oracle Data Miner and Oracle R Enterprise starts with an introduction to business analytics, covering why automation is necessary and the level of complexity in automation at each analytic stage. Then, it focuses on how predictive analytics can be automated by using Oracle Data Miner and Oracle R Enterprise. Also, it explains when and why ODM and ORE are to be used together for automation.

The subsequent chapters detail various statistical processes used for predictive analytics such as calculating attribute importance, clustering methods, regression analysis, classification techniques, ensemble models, and neural networks. In these chapters you will also get to understand the automation processes for each of these statistical processes using ODM and ORE along with their application in a real-life business use case.

What you'll learn

  • Discover the functionality of Oracle Data Miner and Oracle R Enterprise
  • Gain methods to perform in-database predictive analytics
  • Use Oracle's SQL and PLSQL APIs for building analytical solutions
  • Acquire knowledge of common and widely-used business statistical analysis techniques

Who this book is for

IT executives, BI architects, Oracle architects and developers, R users and statisticians.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Automate the predictive analytics process using Oracle Data Miner and Oracle R Enterprise. This book talks about how both these technologies can provide a framework for in-database predictive analytics. You'll see a unified architecture and embedded workflow to automate various analytics steps such as data preprocessing, model creation, and storing final model output to tables.

You'll take a deep dive into various statistical models commonly used in businesses and how they can be automated for predictive analytics using various SQL, PLSQL, ORE, ODM, and native R packages. You'll get to know various options available in the ODM workflow for driving automation. Also, you'll get an understanding of various ways to integrate ODM packages, ORE, and native R packages using PLSQL for automating the processes.

*Data Science Automation Using *Oracle Data Miner and Oracle R Enterprise starts with an introduction to business analytics, covering why automation is necessary and the level of complexity in automation at each analytic stage. Then, it focuses on how predictive analytics can be automated by using Oracle Data Miner and Oracle R Enterprise. Also, it explains when and why ODM and ORE are to be used together for automation.

The subsequent chapters detail various statistical processes used for predictive analytics such as calculating attribute importance, clustering methods, regression analysis, classification techniques, ensemble models, and neural networks. In these chapters you will also get to understand the automation processes for each of these statistical processes using ODM and ORE along with their application in a real-life business use case.

What you'll learn

Who this book is for

IT executives, BI architects, Oracle architects and developers, R users and statisticians.

More books from Apress

Cover of the book The Handbook of Financial Modeling by Sibanjan Das
Cover of the book Business Case Analysis with R by Sibanjan Das
Cover of the book The Definitive Guide to AdonisJs by Sibanjan Das
Cover of the book Black Hat by Sibanjan Das
Cover of the book How to Kill the Scrum Monster by Sibanjan Das
Cover of the book Beginning DAX with Power BI by Sibanjan Das
Cover of the book Learn RPGs in GameMaker: Studio by Sibanjan Das
Cover of the book Introducing SQLite for Mobile Developers by Sibanjan Das
Cover of the book The 12 Magic Slides by Sibanjan Das
Cover of the book Building a Virtual Assistant for Raspberry Pi by Sibanjan Das
Cover of the book Foundations of JSP Design Patterns by Sibanjan Das
Cover of the book Expert Oracle Application Express by Sibanjan Das
Cover of the book Pro Angular by Sibanjan Das
Cover of the book PHP 7 Quick Scripting Reference by Sibanjan Das
Cover of the book Deep Learning with Applications Using Python by Sibanjan Das
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy