Author: | Giancarlo Zaccone, Md. Rezaul Karim | ISBN: | 9781788831833 |
Publisher: | Packt Publishing | Publication: | March 30, 2018 |
Imprint: | Packt Publishing | Language: | English |
Author: | Giancarlo Zaccone, Md. Rezaul Karim |
ISBN: | 9781788831833 |
Publisher: | Packt Publishing |
Publication: | March 30, 2018 |
Imprint: | Packt Publishing |
Language: | English |
Delve into neural networks, implement deep learning algorithms, and explore layers of data abstraction with the help of TensorFlow.
Deep learning is a branch of machine learning algorithms based on learning multiple levels of abstraction. Neural networks, which are at the core of deep learning, are being used in predictive analytics, computer vision, natural language processing, time series forecasting, and to perform a myriad of other complex tasks.
This book is conceived for developers, data analysts, machine learning practitioners and deep learning enthusiasts who want to build powerful, robust, and accurate predictive models with the power of TensorFlow, combined with other open source Python libraries.
Throughout the book, you’ll learn how to develop deep learning applications for machine learning systems using Feedforward Neural Networks, Convolutional Neural Networks, Recurrent Neural Networks, Autoencoders, and Factorization Machines. Discover how to attain deep learning programming on GPU in a distributed way.
You'll come away with an in-depth knowledge of machine learning techniques and the skills to apply them to real-world projects.
The book is for people interested in machine learning and machine intelligence. A rudimentary level of programming in one language is assumed, as is a basic familiarity with computer science techniques and technologies, including a basic awareness of computer hardware and algorithms. Some competence in mathematics is needed to the level of elementary linear algebra and calculus.
Delve into neural networks, implement deep learning algorithms, and explore layers of data abstraction with the help of TensorFlow.
Deep learning is a branch of machine learning algorithms based on learning multiple levels of abstraction. Neural networks, which are at the core of deep learning, are being used in predictive analytics, computer vision, natural language processing, time series forecasting, and to perform a myriad of other complex tasks.
This book is conceived for developers, data analysts, machine learning practitioners and deep learning enthusiasts who want to build powerful, robust, and accurate predictive models with the power of TensorFlow, combined with other open source Python libraries.
Throughout the book, you’ll learn how to develop deep learning applications for machine learning systems using Feedforward Neural Networks, Convolutional Neural Networks, Recurrent Neural Networks, Autoencoders, and Factorization Machines. Discover how to attain deep learning programming on GPU in a distributed way.
You'll come away with an in-depth knowledge of machine learning techniques and the skills to apply them to real-world projects.
The book is for people interested in machine learning and machine intelligence. A rudimentary level of programming in one language is assumed, as is a basic familiarity with computer science techniques and technologies, including a basic awareness of computer hardware and algorithms. Some competence in mathematics is needed to the level of elementary linear algebra and calculus.