Degradation Rate of Bioresorbable Materials

Prediction and Evaluation

Nonfiction, Science & Nature, Technology, Material Science
Cover of the book Degradation Rate of Bioresorbable Materials by , Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781845695033
Publisher: Elsevier Science Publication: September 26, 2008
Imprint: Woodhead Publishing Language: English
Author:
ISBN: 9781845695033
Publisher: Elsevier Science
Publication: September 26, 2008
Imprint: Woodhead Publishing
Language: English

Bioresorbable materials are extensively used for a wide range of biomedical applications from drug delivery to fracture fixation, and may remain in the body for weeks, months or even years. Accurately predicting and evaluating the degradation rate of these materials is critical to their performance and the controlled release of bioactive agents. Degradation rate of bioresorbable materials provides a comprehensive review of the most important techniques in safely predicting and evaluating the degradation rate of polymer, ceramic and composite based biomaterials.

Part one provides an introductory review of bioresorbable materials and the biological environment of the body. Chapters in Part two address degradation mechanisms of commonly used materials such as polymers and ceramics. This is followed by chapters on bioresorption test methods and modelling techniques in Part three. Part four discusses factors influencing bioresorbability such as sterilisation, porosity and host response. The final section reviews current clinical applications of bioresorbable materials.

With its distinguished editor and multidisciplinary team of international contributors, Degradation rate of bioresorbable materials: prediction and evaluation provides a unique and valuable reference for biomaterials scientists, engineers and students as well as the medical community.

  • Comprehensively reviews the most pertinent techniques in safely predicting and evaluating the degradation rate of bioresorbable materials
  • Addresses degradation mechanisms of commonly used materials
  • Discusses factors influencing bioresorbability such as sterilisation and host response
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Bioresorbable materials are extensively used for a wide range of biomedical applications from drug delivery to fracture fixation, and may remain in the body for weeks, months or even years. Accurately predicting and evaluating the degradation rate of these materials is critical to their performance and the controlled release of bioactive agents. Degradation rate of bioresorbable materials provides a comprehensive review of the most important techniques in safely predicting and evaluating the degradation rate of polymer, ceramic and composite based biomaterials.

Part one provides an introductory review of bioresorbable materials and the biological environment of the body. Chapters in Part two address degradation mechanisms of commonly used materials such as polymers and ceramics. This is followed by chapters on bioresorption test methods and modelling techniques in Part three. Part four discusses factors influencing bioresorbability such as sterilisation, porosity and host response. The final section reviews current clinical applications of bioresorbable materials.

With its distinguished editor and multidisciplinary team of international contributors, Degradation rate of bioresorbable materials: prediction and evaluation provides a unique and valuable reference for biomaterials scientists, engineers and students as well as the medical community.

More books from Elsevier Science

Cover of the book Nicotine Use in Mental Illness and Neurological Disorders by
Cover of the book Fe-S Cluster Enzymes Part A by
Cover of the book Cellular and Molecular Pathobiology of Cardiovascular Disease by
Cover of the book Essential Zebrafish Methods: Genetics and Genomics by
Cover of the book Biomedical Polymers by
Cover of the book Advances in Genetics by
Cover of the book Reliability Assurance of Big Data in the Cloud by
Cover of the book Principles and Applications of Quantum Chemistry by
Cover of the book Advances in Imaging and Electron Physics by
Cover of the book Internet of Things by
Cover of the book Electronic Resource Management by
Cover of the book Residual Stresses in Friction Stir Welding by
Cover of the book Characterization of Liquids, Nano- and Microparticulates, and Porous Bodies using Ultrasound by
Cover of the book International Review of Research in Mental Retardation by
Cover of the book Neurobiological Background of Exploration Geosciences by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy