Domain Adaptation in Computer Vision Applications

Nonfiction, Computers, Advanced Computing, Artificial Intelligence, Application Software, Computer Graphics, General Computing
Cover of the book Domain Adaptation in Computer Vision Applications by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319583471
Publisher: Springer International Publishing Publication: September 10, 2017
Imprint: Springer Language: English
Author:
ISBN: 9783319583471
Publisher: Springer International Publishing
Publication: September 10, 2017
Imprint: Springer
Language: English

This comprehensive text/reference presents a broad review of diverse domain adaptation (DA) methods for machine learning, with a focus on solutions for visual applications. The book collects together solutions and perspectives proposed by an international selection of pre-eminent experts in the field, addressing not only classical image categorization, but also other computer vision tasks such as detection, segmentation and visual attributes.

Topics and features: surveys the complete field of visual DA, including shallow methods designed for homogeneous and heterogeneous data as well as deep architectures; presents a positioning of the dataset bias in the CNN-based feature arena; proposes detailed analyses of popular shallow methods that addresses landmark data selection, kernel embedding, feature alignment, joint feature transformation and classifier adaptation, or the case of limited access to the source data; discusses more recent deep DA methods, including discrepancy-based adaptation networks and adversarial discriminative DA models; addresses domain adaptation problems beyond image categorization, such as a Fisher encoding adaptation for vehicle re-identification, semantic segmentation and detection trained on synthetic images, and domain generalization for semantic part detection; describes a multi-source domain generalization technique for visual attributes and a unifying framework for multi-domain and multi-task learning.

This authoritative volume will be of great interest to a broad audience ranging from researchers and practitioners, to students involved in computer vision, pattern recognition and machine learning.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This comprehensive text/reference presents a broad review of diverse domain adaptation (DA) methods for machine learning, with a focus on solutions for visual applications. The book collects together solutions and perspectives proposed by an international selection of pre-eminent experts in the field, addressing not only classical image categorization, but also other computer vision tasks such as detection, segmentation and visual attributes.

Topics and features: surveys the complete field of visual DA, including shallow methods designed for homogeneous and heterogeneous data as well as deep architectures; presents a positioning of the dataset bias in the CNN-based feature arena; proposes detailed analyses of popular shallow methods that addresses landmark data selection, kernel embedding, feature alignment, joint feature transformation and classifier adaptation, or the case of limited access to the source data; discusses more recent deep DA methods, including discrepancy-based adaptation networks and adversarial discriminative DA models; addresses domain adaptation problems beyond image categorization, such as a Fisher encoding adaptation for vehicle re-identification, semantic segmentation and detection trained on synthetic images, and domain generalization for semantic part detection; describes a multi-source domain generalization technique for visual attributes and a unifying framework for multi-domain and multi-task learning.

This authoritative volume will be of great interest to a broad audience ranging from researchers and practitioners, to students involved in computer vision, pattern recognition and machine learning.

More books from Springer International Publishing

Cover of the book Elliptic and Parabolic Equations by
Cover of the book Fiscal Rules - Limits on Governmental Deficits and Debt by
Cover of the book OpenSHMEM and Related Technologies. Enhancing OpenSHMEM for Hybrid Environments by
Cover of the book The Economics of Public Health by
Cover of the book The Immunology of Cardiovascular Homeostasis and Pathology by
Cover of the book Computer-Aided Design of Microfluidic Very Large Scale Integration (mVLSI) Biochips by
Cover of the book Multiculturalism, Multilingualism and the Self: Literature and Culture Studies by
Cover of the book Confidential Informants by
Cover of the book The Precarious in the Cinemas of the Americas by
Cover of the book The Religious Left in Modern America by
Cover of the book The Luxembourg Gutland Landscape by
Cover of the book Obesity and Lipotoxicity by
Cover of the book Social Capital and Enterprise in the Modern State by
Cover of the book Evolutionary Global Optimization, Manifolds and Applications by
Cover of the book HCI Redux by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy