Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites

Nonfiction, Science & Nature, Technology, Material Science
Cover of the book Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites by , Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780081022986
Publisher: Elsevier Science Publication: September 13, 2018
Imprint: Woodhead Publishing Language: English
Author:
ISBN: 9780081022986
Publisher: Elsevier Science
Publication: September 13, 2018
Imprint: Woodhead Publishing
Language: English

Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites focuses on the advanced characterization techniques used for the analysis of composite materials developed from natural fiber/biomass, synthetic fibers and a combination of these materials used as fillers and reinforcements to enhance materials performance and utilization in automotive, aerospace, construction and building components. The book presents key aspects of fracture and failure in natural/synthetic, fiber reinforced, polymer based composite materials, ranging from crack propagation, to crack growth, and from notch-size effect, to damage-tolerant design.

Written by leading experts in the field, and covering composite materials developed from different natural fibers and their hybridization with synthetic fibers, the book's chapters provide cutting-edge, up-to-date research on the characterization, analysis and modelling of composite materials.

  • Contains contributions from leading experts in the field
  • Discusses recent progress on failure analysis, SHM, durability, life prediction and the modelling of damage in natural fiber-based composite materials
  • Covers experimental, analytical and numerical analysis
  • Provides detailed and comprehensive information on mechanical properties, testing methods and modelling techniques
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites focuses on the advanced characterization techniques used for the analysis of composite materials developed from natural fiber/biomass, synthetic fibers and a combination of these materials used as fillers and reinforcements to enhance materials performance and utilization in automotive, aerospace, construction and building components. The book presents key aspects of fracture and failure in natural/synthetic, fiber reinforced, polymer based composite materials, ranging from crack propagation, to crack growth, and from notch-size effect, to damage-tolerant design.

Written by leading experts in the field, and covering composite materials developed from different natural fibers and their hybridization with synthetic fibers, the book's chapters provide cutting-edge, up-to-date research on the characterization, analysis and modelling of composite materials.

More books from Elsevier Science

Cover of the book Phytosfere'99 - Highlights in European Plant Biotechnology Research and Technology Transfer by
Cover of the book Epigenetic Principles of Evolution by
Cover of the book Understanding the Chinese Economies by
Cover of the book Advances in Computers by
Cover of the book Advances in Marine Biology by
Cover of the book Dictionary of Trees, Volume 2: South America by
Cover of the book Brain Research in Addiction by
Cover of the book Forensic Victimology by
Cover of the book Autophagy in Disease and Clinical Applications, Part C by
Cover of the book Computer Architecture by
Cover of the book Profiling and Serial Crime by
Cover of the book Thiol Redox Transitions in Cell Signaling, Part A by
Cover of the book Cancer Immunotherapy by
Cover of the book Nanomaterials in Chromatography by
Cover of the book Assessment of Research Needs for Advanced Fuel Cells by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy