Einführung Addition Subtraktion

Nonfiction, Science & Nature, Mathematics, Algebra
Cover of the book Einführung Addition Subtraktion by Manuela Ickler, GRIN Verlag
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Manuela Ickler ISBN: 9783638390095
Publisher: GRIN Verlag Publication: June 23, 2005
Imprint: GRIN Verlag Language: German
Author: Manuela Ickler
ISBN: 9783638390095
Publisher: GRIN Verlag
Publication: June 23, 2005
Imprint: GRIN Verlag
Language: German

Studienarbeit aus dem Jahr 2004 im Fachbereich Mathematik - Algebra, Note: anerkannt (keine Note), Universität zu Köln (Heilpädagogische Fakultät Köln), Veranstaltung: Mathematik an der Schule für Lernbehinderte, 4 Quellen im Literaturverzeichnis, Sprache: Deutsch, Abstract: Zum Einstieg möchte ich auf eine grundlegende Fragestellung hinweisen, die sich bei jeder Einführung in eine neue Rechenart ergibt. Die Lehrperson muss sich entscheiden, ob er zur Einführung ein Normalverfahren verwendet oder den Schülern die Freiheit gibt, eigene Lösungswege zu entdecken. Für das Normalverfahren plädierte Büttner 1910 mit folgenden Worten: 'Es gibt bei jeder Rechnungsart ein Verfahren, das immer zum Ziel führt, ganz unabhängig von der zufälligen Beschaffenheit der Zahlen. Wir nennen es das Normalverfahren. Auch wo dem Lehrer verschiedene Wege gangbar erscheinen, muss er sich für einen derselben entscheiden. Es wäre verkehrt bei der ersten Einführung in eine neue Rechenart gleich die ersten Aufgaben auf möglichst verschiedene Weise lösen zu lassen (...)' (zit. nach Lauter 1991). Büttner ist also der Auffassung, der richtige Weg sei es, den Schülern ein Verfahren zu vermitteln, das sicher zum Erfolg führt. Wenn der Schüler dieses Normalverfahren beherrscht, kann der Lehrer ihn auf andere Lösungswege als Alternativen hinweisen. Damit will Büttner sicherstellen, dass jeder Schüler das Handwerkszeug besitzt, eine Aufgabe richtig zu lösen. Demgegenüber steht die Möglichkeit der eigenen Lösungswege, die 1919 von Kühnel vertreten wurde. 'Wir wollen kein Normalverfahren den Kindern aufnötigen. Nicht darauf kommt es an, dass das Kind einen bestimmten Weg gehen lernt (...), sondern dass es seinen Weg allein zu suchen und zu finden weiß. (...)' (zit. nach Lauter 1991). Die Vertreter dieses Weges sind der Meinung, dass man den Bedürfnissen, den Lernvoraussetzungen und den individuellen Denkweisen der Schüler nicht gerecht wird, indem man jedem von ihnen das gleiche Verfahren versucht zu vermitteln. Stattdessen treten sie dafür ein, dass der Lehrer den Schülern die Chance bietet, sich auf ihren eigenen Wegen mit dem Lernstoff und dem Problem auseinander zu setzen. So sollen die Schüler zu einer zu ihnen passenden Einsicht in die Strukturen und Lösungsmöglichkeiten gelangen. Hat der Lerner schließlich das Problem erkannt und seinen Aufbau entschlüsselt, erst dann stellt der Lehrer das Normalverfahren zur Verfügung. Zu diesem Zeitpunkt sind die Schüler so weit, dass sie dieses Verfahren verstehen und seine Vorteile gegenüber ihren eigenen gewählten Lösungswegen erkennen können. Nach Kühnel werden die Schüler auf Grund dieses Einsehens dann das Normalverfahren von sich anwenden und als Lösungsstrategie verwenden.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Studienarbeit aus dem Jahr 2004 im Fachbereich Mathematik - Algebra, Note: anerkannt (keine Note), Universität zu Köln (Heilpädagogische Fakultät Köln), Veranstaltung: Mathematik an der Schule für Lernbehinderte, 4 Quellen im Literaturverzeichnis, Sprache: Deutsch, Abstract: Zum Einstieg möchte ich auf eine grundlegende Fragestellung hinweisen, die sich bei jeder Einführung in eine neue Rechenart ergibt. Die Lehrperson muss sich entscheiden, ob er zur Einführung ein Normalverfahren verwendet oder den Schülern die Freiheit gibt, eigene Lösungswege zu entdecken. Für das Normalverfahren plädierte Büttner 1910 mit folgenden Worten: 'Es gibt bei jeder Rechnungsart ein Verfahren, das immer zum Ziel führt, ganz unabhängig von der zufälligen Beschaffenheit der Zahlen. Wir nennen es das Normalverfahren. Auch wo dem Lehrer verschiedene Wege gangbar erscheinen, muss er sich für einen derselben entscheiden. Es wäre verkehrt bei der ersten Einführung in eine neue Rechenart gleich die ersten Aufgaben auf möglichst verschiedene Weise lösen zu lassen (...)' (zit. nach Lauter 1991). Büttner ist also der Auffassung, der richtige Weg sei es, den Schülern ein Verfahren zu vermitteln, das sicher zum Erfolg führt. Wenn der Schüler dieses Normalverfahren beherrscht, kann der Lehrer ihn auf andere Lösungswege als Alternativen hinweisen. Damit will Büttner sicherstellen, dass jeder Schüler das Handwerkszeug besitzt, eine Aufgabe richtig zu lösen. Demgegenüber steht die Möglichkeit der eigenen Lösungswege, die 1919 von Kühnel vertreten wurde. 'Wir wollen kein Normalverfahren den Kindern aufnötigen. Nicht darauf kommt es an, dass das Kind einen bestimmten Weg gehen lernt (...), sondern dass es seinen Weg allein zu suchen und zu finden weiß. (...)' (zit. nach Lauter 1991). Die Vertreter dieses Weges sind der Meinung, dass man den Bedürfnissen, den Lernvoraussetzungen und den individuellen Denkweisen der Schüler nicht gerecht wird, indem man jedem von ihnen das gleiche Verfahren versucht zu vermitteln. Stattdessen treten sie dafür ein, dass der Lehrer den Schülern die Chance bietet, sich auf ihren eigenen Wegen mit dem Lernstoff und dem Problem auseinander zu setzen. So sollen die Schüler zu einer zu ihnen passenden Einsicht in die Strukturen und Lösungsmöglichkeiten gelangen. Hat der Lerner schließlich das Problem erkannt und seinen Aufbau entschlüsselt, erst dann stellt der Lehrer das Normalverfahren zur Verfügung. Zu diesem Zeitpunkt sind die Schüler so weit, dass sie dieses Verfahren verstehen und seine Vorteile gegenüber ihren eigenen gewählten Lösungswegen erkennen können. Nach Kühnel werden die Schüler auf Grund dieses Einsehens dann das Normalverfahren von sich anwenden und als Lösungsstrategie verwenden.

More books from GRIN Verlag

Cover of the book Nationale Arbeitsmarktpolitik auf offenen Märkten by Manuela Ickler
Cover of the book Die Regulierung von Monopolen - Theorie by Manuela Ickler
Cover of the book Feministische Geographie by Manuela Ickler
Cover of the book Ist unser Wille wirklich frei? by Manuela Ickler
Cover of the book Jüdische Gemeinden am Rhein und die Pogrome von 1096 by Manuela Ickler
Cover of the book Biografiearbeit als Verfahren psychosozialer Beratung zur Bewältigung von Identitätskrisen bei älteren Menschen. by Manuela Ickler
Cover of the book Beurteilungsfehler bei der Verhaltensbeurteilung von Mitarbeitern auf Seiten des Beurteilers während des Beurteilungsprozesses und ihre Vermeidungsstrategien by Manuela Ickler
Cover of the book Implizite Optionen in der Banksteuerung by Manuela Ickler
Cover of the book Arbeitnehmerdatenschutz - Ein Überblick über die aktuelle Rechtslage und ein Ausblick auf die zukünftige Entwicklung by Manuela Ickler
Cover of the book Rituelle und kultische Elemente in der Aristophanischen Komödie by Manuela Ickler
Cover of the book Der Föderalismus der Bundesrepublik Deutschland by Manuela Ickler
Cover of the book Alter(n) als soziales Problem: Ursachen und Auswirkungen by Manuela Ickler
Cover of the book Music and Advertising in Television II by Manuela Ickler
Cover of the book Der Euro - auf dem Weg zur Leitwährung? by Manuela Ickler
Cover of the book Von der Motivationstheorie zur Motivationspraxis - Begriffe und Modelle by Manuela Ickler
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy