Einstein's Geometry and Tests

Nonfiction, Science & Nature, Science, Physics, Gravity
Cover of the book Einstein's Geometry and Tests by James Constant, James Constant
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: James Constant ISBN: 9781310868290
Publisher: James Constant Publication: October 29, 2014
Imprint: Smashwords Edition Language: English
Author: James Constant
ISBN: 9781310868290
Publisher: James Constant
Publication: October 29, 2014
Imprint: Smashwords Edition
Language: English

General Relativity is the theory of gravity that incorporates special relativity and the weak equivalence principle which states that accelerating frames of reference and gravitational fields are indistinguishable. It is a metric theory, sometimes also called a geometric theory. Metric theories describe physical phenomena in terms of differential geometry.This stands in contrast to Isaac Newton's Law of Universal Gravitation, which described gravity in terms of a vector field. The equivalence principle permits General Relativity to replace Newton's force by Riemann's geometry. Amazingly, General Relativity claims it describes both Newton’s metric Galactic Universe and Planck’s metric-less Extra Galactic Radiation Universe. I question General Relativity’s claim to being an axiomatic geometric theory.
Einstein's view on geometry was ambivalent. In geometry, axioms have served us well and axiomatic geometry has evolved over the past several thousand years and now includes linear Euclidean and non-linear Euclidean geometries. The idea that a physical geometry, therefore, exists outside axiomatic geometry is unproved. While Einstein's geometry identifies with Riemann's geometry, it has no axiomatic basis and relies on substantial simplifications winding up in Newtonian approximations and axiomatic Euclidean metrics for its proofs. Experimental science is a more recent development and is being codified along the way. Here, note that Newton's Theory of Gravitation, Maxwell's Theory of Electromagnetism, and Einstein's Theory of Special Relativity, and Quantum Mechanics have been abundantly confirmed experimentally. Einstein's theory of gravitation has few experimental results and his attempt to replace cosmic gravity by geometry fails for lack of geometric axiomatic basis and dearth of experimental results. First, I concentrate on General Relativity's lack of axiomatic geometry and later briefly discuss its lack of experimental results.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

General Relativity is the theory of gravity that incorporates special relativity and the weak equivalence principle which states that accelerating frames of reference and gravitational fields are indistinguishable. It is a metric theory, sometimes also called a geometric theory. Metric theories describe physical phenomena in terms of differential geometry.This stands in contrast to Isaac Newton's Law of Universal Gravitation, which described gravity in terms of a vector field. The equivalence principle permits General Relativity to replace Newton's force by Riemann's geometry. Amazingly, General Relativity claims it describes both Newton’s metric Galactic Universe and Planck’s metric-less Extra Galactic Radiation Universe. I question General Relativity’s claim to being an axiomatic geometric theory.
Einstein's view on geometry was ambivalent. In geometry, axioms have served us well and axiomatic geometry has evolved over the past several thousand years and now includes linear Euclidean and non-linear Euclidean geometries. The idea that a physical geometry, therefore, exists outside axiomatic geometry is unproved. While Einstein's geometry identifies with Riemann's geometry, it has no axiomatic basis and relies on substantial simplifications winding up in Newtonian approximations and axiomatic Euclidean metrics for its proofs. Experimental science is a more recent development and is being codified along the way. Here, note that Newton's Theory of Gravitation, Maxwell's Theory of Electromagnetism, and Einstein's Theory of Special Relativity, and Quantum Mechanics have been abundantly confirmed experimentally. Einstein's theory of gravitation has few experimental results and his attempt to replace cosmic gravity by geometry fails for lack of geometric axiomatic basis and dearth of experimental results. First, I concentrate on General Relativity's lack of axiomatic geometry and later briefly discuss its lack of experimental results.

More books from James Constant

Cover of the book The Navier-Stokes Millenium Problem by James Constant
Cover of the book Global Positioning System Clock Errors by James Constant
Cover of the book Supreme Court Petition For Rehearing No 10-1275 by James Constant
Cover of the book Literature and Law by James Constant
Cover of the book The Declining Individual Inventor by James Constant
Cover of the book Argument and Program for Certainty in Law by James Constant
Cover of the book Astronomical Rotations by James Constant
Cover of the book Petition for Certiorari Denied Without Opinion: Patent Case 98-1972. by James Constant
Cover of the book Le Verrier's and Einstein's Predictions for Precession of Perihelia by James Constant
Cover of the book California Supreme Court Questions Presented by James Constant
Cover of the book Courts and Law by James Constant
Cover of the book Character of the State by James Constant
Cover of the book Redshift and Speed of Light by James Constant
Cover of the book The Illusion of Space Expansion by James Constant
Cover of the book Hilbert Godel Turing and the Computer Decision Problem by James Constant
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy