Elements of Hilbert Spaces and Operator Theory

Nonfiction, Science & Nature, Mathematics, Functional Analysis, Mathematical Analysis
Cover of the book Elements of Hilbert Spaces and Operator Theory by Harkrishan Lal Vasudeva, Springer Singapore
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Harkrishan Lal Vasudeva ISBN: 9789811030208
Publisher: Springer Singapore Publication: March 27, 2017
Imprint: Springer Language: English
Author: Harkrishan Lal Vasudeva
ISBN: 9789811030208
Publisher: Springer Singapore
Publication: March 27, 2017
Imprint: Springer
Language: English

The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compression spectrum, have been worked out. Spectral theorems for self-adjoint operators, and normal operators, follow the spectral theorem for compact normal operators. The book also discusses invariant subspaces with special attention to the Volterra operator and unbounded operators.

In order to make the text as accessible as possible, motivation for the topics is introduced and a greater amount of explanation than is usually found in standard texts on the subject is provided. The abstract theory in the book is supplemented with concrete examples. It is expected that these features will help the reader get a good grasp of the topics discussed. Hints and solutions to all the problems are collected at the end of the book. Additional features are introduced in the book when it becomes imperative. This spirit is kept alive throughout the book.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compression spectrum, have been worked out. Spectral theorems for self-adjoint operators, and normal operators, follow the spectral theorem for compact normal operators. The book also discusses invariant subspaces with special attention to the Volterra operator and unbounded operators.

In order to make the text as accessible as possible, motivation for the topics is introduced and a greater amount of explanation than is usually found in standard texts on the subject is provided. The abstract theory in the book is supplemented with concrete examples. It is expected that these features will help the reader get a good grasp of the topics discussed. Hints and solutions to all the problems are collected at the end of the book. Additional features are introduced in the book when it becomes imperative. This spirit is kept alive throughout the book.

More books from Springer Singapore

Cover of the book Innovations in Computational Intelligence by Harkrishan Lal Vasudeva
Cover of the book Signal and Information Processing, Networking and Computers by Harkrishan Lal Vasudeva
Cover of the book Calculus for Cognitive Scientists by Harkrishan Lal Vasudeva
Cover of the book Intelligent Engineering Informatics by Harkrishan Lal Vasudeva
Cover of the book Massive MIMO Detection Algorithm and VLSI Architecture by Harkrishan Lal Vasudeva
Cover of the book Analysis and Synthesis of Delta Operator Systems with Actuator Saturation by Harkrishan Lal Vasudeva
Cover of the book Imperialism with Reference to Syria by Harkrishan Lal Vasudeva
Cover of the book Global Sourcing and Supply Management Excellence in China by Harkrishan Lal Vasudeva
Cover of the book Emerging Technologies in Computer Engineering: Microservices in Big Data Analytics by Harkrishan Lal Vasudeva
Cover of the book GI Surgery Annual by Harkrishan Lal Vasudeva
Cover of the book The Case of the iPad by Harkrishan Lal Vasudeva
Cover of the book In the Realm of the Senses by Harkrishan Lal Vasudeva
Cover of the book Tongue Image Analysis by Harkrishan Lal Vasudeva
Cover of the book Advances in Computer, Communication and Control by Harkrishan Lal Vasudeva
Cover of the book Research in Mathematics Education in Australasia 2012-2015 by Harkrishan Lal Vasudeva
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy