Fencing for Conservation

Restriction of Evolutionary Potential or a Riposte to Threatening Processes?

Nonfiction, Science & Nature, Science, Biological Sciences, Ecology, Nature, Environment, Environmental Conservation & Protection
Cover of the book Fencing for Conservation by , Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781461409021
Publisher: Springer New York Publication: November 23, 2011
Imprint: Springer Language: English
Author:
ISBN: 9781461409021
Publisher: Springer New York
Publication: November 23, 2011
Imprint: Springer
Language: English

The conflict between increasing human population and biodiversity conservation is one of the IUCN’s key threatening processes. Conservation planning has received a great deal of coverage and research as a way of conserving biodiversity yet, while theoretically successful, it has never been tested. Simple lines on maps to illustrate conservation areas are unlikely to be successful in the light of human encroachment. It may be that some form of overt display is necessary to ensure the protection of reserves. This may be signage, presence of guards/rangers or physical fencing structures. The need for some form of barrier goes beyond restricting human access. The megafauna of Africa pose a genuine threat to human survival. In southern Africa, fences keep animals in and protect the abutting human population. Elsewhere, fencing is not considered important or viable. Where poverty is rife, it won’t take much to tip the balance from beneficial conservation areas to troublesome repositories of crop-raiders, diseases and killers. Conversely, in New Zealand fences are used to keep animals out. Introduced species have decimated New Zealand’s endemic birds, reptiles and invertebrates, and several sites have been entirely encapsulated in mouse-proof fencing to ensure their protection. Australia faces the same problems as New Zealand, however surrounds its national parks with cattle fences. Foxes and cats are free to enter and leave at will, resulting in rapid recolonisation following poisoning campaigns. How long will these poison campaigns work before tolerance, aversion or resistance evolves in the introduced predator populations?

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The conflict between increasing human population and biodiversity conservation is one of the IUCN’s key threatening processes. Conservation planning has received a great deal of coverage and research as a way of conserving biodiversity yet, while theoretically successful, it has never been tested. Simple lines on maps to illustrate conservation areas are unlikely to be successful in the light of human encroachment. It may be that some form of overt display is necessary to ensure the protection of reserves. This may be signage, presence of guards/rangers or physical fencing structures. The need for some form of barrier goes beyond restricting human access. The megafauna of Africa pose a genuine threat to human survival. In southern Africa, fences keep animals in and protect the abutting human population. Elsewhere, fencing is not considered important or viable. Where poverty is rife, it won’t take much to tip the balance from beneficial conservation areas to troublesome repositories of crop-raiders, diseases and killers. Conversely, in New Zealand fences are used to keep animals out. Introduced species have decimated New Zealand’s endemic birds, reptiles and invertebrates, and several sites have been entirely encapsulated in mouse-proof fencing to ensure their protection. Australia faces the same problems as New Zealand, however surrounds its national parks with cattle fences. Foxes and cats are free to enter and leave at will, resulting in rapid recolonisation following poisoning campaigns. How long will these poison campaigns work before tolerance, aversion or resistance evolves in the introduced predator populations?

More books from Springer New York

Cover of the book Ecotoxicological Characterization of Waste by
Cover of the book Topics on the Dynamics of Civil Structures, Volume 1 by
Cover of the book Precision Molecular Pathology of Dermatologic Diseases by
Cover of the book The Fluency Construct by
Cover of the book Reviews of Environmental Contamination and Toxicology by
Cover of the book Cell Formation in Industrial Engineering by
Cover of the book Contraception for Adolescent and Young Adult Women by
Cover of the book Novel Chemical Tools to Study Ion Channel Biology by
Cover of the book Trace Elements in the Terrestrial Environment by
Cover of the book Software Automatic Tuning by
Cover of the book Physics of Ultra-Cold Matter by
Cover of the book Divorced Fathers and Their Families by
Cover of the book Neuroscience in Intercultural Contexts by
Cover of the book Marine Physiology Down East: The Story of the Mt. Desert Island Biological Laboratory by
Cover of the book Reviews of Environmental Contamination and Toxicology by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy