Gaseous Hydrogen Embrittlement of Materials in Energy Technologies

The Problem, its Characterisation and Effects on Particular Alloy Classes

Nonfiction, Science & Nature, Technology, Power Resources
Cover of the book Gaseous Hydrogen Embrittlement of Materials in Energy Technologies by , Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780857093899
Publisher: Elsevier Science Publication: January 16, 2012
Imprint: Woodhead Publishing Language: English
Author:
ISBN: 9780857093899
Publisher: Elsevier Science
Publication: January 16, 2012
Imprint: Woodhead Publishing
Language: English

Many modern energy systems are reliant on the production, transportation, storage, and use of gaseous hydrogen. The safety, durability, performance and economic operation of these systems is challenged by operating-cycle dependent degradation by hydrogen of otherwise high performance materials. This important two-volume work provides a comprehensive and authoritative overview of the latest research into managing hydrogen embrittlement in energy technologies.

Volume 1 is divided into three parts, the first of which provides an overview of the hydrogen embrittlement problem in specific technologies including petrochemical refining, automotive hydrogen tanks, nuclear waste disposal and power systems, and H2 storage and distribution facilities. Part two then examines modern methods of characterization and analysis of hydrogen damage and part three focuses on the hydrogen degradation of various alloy classes

With its distinguished editors and international team of expert contributors, Volume 1 of Gaseous hydrogen embrittlement of materials in energy technologies is an invaluable reference tool for engineers, designers, materials scientists, and solid mechanicians working with safety-critical components fabricated from high performance materials required to operate in severe environments based on hydrogen. Impacted technologies include aerospace, petrochemical refining, gas transmission, power generation and transportation.

  • Summarises the wealth of recent research on understanding and dealing with the safety, durability, performance and economic operation of using gaseous hydrogen at high pressure
  • Reviews how hydrogen embrittlement affects particular sectors such as the petrochemicals, automotive and nuclear industries
  • Discusses how hydrogen embrittlement can be characterised and its effects on particular alloy classes
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Many modern energy systems are reliant on the production, transportation, storage, and use of gaseous hydrogen. The safety, durability, performance and economic operation of these systems is challenged by operating-cycle dependent degradation by hydrogen of otherwise high performance materials. This important two-volume work provides a comprehensive and authoritative overview of the latest research into managing hydrogen embrittlement in energy technologies.

Volume 1 is divided into three parts, the first of which provides an overview of the hydrogen embrittlement problem in specific technologies including petrochemical refining, automotive hydrogen tanks, nuclear waste disposal and power systems, and H2 storage and distribution facilities. Part two then examines modern methods of characterization and analysis of hydrogen damage and part three focuses on the hydrogen degradation of various alloy classes

With its distinguished editors and international team of expert contributors, Volume 1 of Gaseous hydrogen embrittlement of materials in energy technologies is an invaluable reference tool for engineers, designers, materials scientists, and solid mechanicians working with safety-critical components fabricated from high performance materials required to operate in severe environments based on hydrogen. Impacted technologies include aerospace, petrochemical refining, gas transmission, power generation and transportation.

More books from Elsevier Science

Cover of the book User Experience in the Age of Sustainability by
Cover of the book Embedded Computing and Mechatronics with the PIC32 Microcontroller by
Cover of the book Media and Information Literacy in Higher Education by
Cover of the book Advances in Magnetic and Optical Resonance by
Cover of the book Adenoviral Vectors for Gene Therapy by
Cover of the book The Handbook of Metabonomics and Metabolomics by
Cover of the book Digital Control Systems Implementation Techniques by
Cover of the book Contributions to Sensory Physiology by
Cover of the book Discover Digital Libraries by
Cover of the book Peptide Applications in Biomedicine, Biotechnology and Bioengineering by
Cover of the book The International Sugar Trade by
Cover of the book Supercritical Fluids and Organometallic Compounds by
Cover of the book Defense Mechanisms by
Cover of the book Six Sigma Quality for Business and Manufacture by
Cover of the book Competitive Intelligence for Information Professionals by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy