Geometric Control Theory and Sub-Riemannian Geometry

Nonfiction, Science & Nature, Mathematics, Mathematical Analysis, Calculus
Cover of the book Geometric Control Theory and Sub-Riemannian Geometry by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319021324
Publisher: Springer International Publishing Publication: June 5, 2014
Imprint: Springer Language: English
Author:
ISBN: 9783319021324
Publisher: Springer International Publishing
Publication: June 5, 2014
Imprint: Springer
Language: English

Honoring Andrei Agrachev's 60th birthday, this volume presents recent advances in the interaction between Geometric Control Theory and sub-Riemannian geometry. On the one hand, Geometric Control Theory used the differential geometric and Lie algebraic language for studying controllability, motion planning, stabilizability and optimality for control systems. The geometric approach turned out to be fruitful in applications to robotics, vision modeling, mathematical physics etc. On the other hand, Riemannian geometry and its generalizations, such as sub-Riemannian, Finslerian geometry etc., have been actively adopting methods developed in the scope of geometric control. Application of these methods has led to important results regarding geometry of sub-Riemannian spaces, regularity of sub-Riemannian distances, properties of the group of diffeomorphisms of sub-Riemannian manifolds, local geometry and equivalence of distributions and sub-Riemannian structures, regularity of the Hausdorff volume, etc.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Honoring Andrei Agrachev's 60th birthday, this volume presents recent advances in the interaction between Geometric Control Theory and sub-Riemannian geometry. On the one hand, Geometric Control Theory used the differential geometric and Lie algebraic language for studying controllability, motion planning, stabilizability and optimality for control systems. The geometric approach turned out to be fruitful in applications to robotics, vision modeling, mathematical physics etc. On the other hand, Riemannian geometry and its generalizations, such as sub-Riemannian, Finslerian geometry etc., have been actively adopting methods developed in the scope of geometric control. Application of these methods has led to important results regarding geometry of sub-Riemannian spaces, regularity of sub-Riemannian distances, properties of the group of diffeomorphisms of sub-Riemannian manifolds, local geometry and equivalence of distributions and sub-Riemannian structures, regularity of the Hausdorff volume, etc.

More books from Springer International Publishing

Cover of the book Karst Water Environment by
Cover of the book Smart Micro-Grid Systems Security and Privacy by
Cover of the book The Critical Thought of W. B. Yeats by
Cover of the book Cloud Computing and Security by
Cover of the book Algorithms and Discrete Applied Mathematics by
Cover of the book Food Analysis by
Cover of the book Dynamic Buckling of Columns Inside Oil Wells by
Cover of the book Granular Computing in Decision Approximation by
Cover of the book Evaluation Method of Energy Consumption in Logistic Warehouse Systems by
Cover of the book Postharvest Quality Assurance of Fruits by
Cover of the book Higher Education: Handbook of Theory and Research by
Cover of the book Code Breaking in the Pacific by
Cover of the book Internetworked World by
Cover of the book Arab Women and the Media in Changing Landscapes by
Cover of the book Long Term Evolution by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy