Geometric Control Theory and Sub-Riemannian Geometry

Nonfiction, Science & Nature, Mathematics, Mathematical Analysis, Calculus
Cover of the book Geometric Control Theory and Sub-Riemannian Geometry by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319021324
Publisher: Springer International Publishing Publication: June 5, 2014
Imprint: Springer Language: English
Author:
ISBN: 9783319021324
Publisher: Springer International Publishing
Publication: June 5, 2014
Imprint: Springer
Language: English

Honoring Andrei Agrachev's 60th birthday, this volume presents recent advances in the interaction between Geometric Control Theory and sub-Riemannian geometry. On the one hand, Geometric Control Theory used the differential geometric and Lie algebraic language for studying controllability, motion planning, stabilizability and optimality for control systems. The geometric approach turned out to be fruitful in applications to robotics, vision modeling, mathematical physics etc. On the other hand, Riemannian geometry and its generalizations, such as sub-Riemannian, Finslerian geometry etc., have been actively adopting methods developed in the scope of geometric control. Application of these methods has led to important results regarding geometry of sub-Riemannian spaces, regularity of sub-Riemannian distances, properties of the group of diffeomorphisms of sub-Riemannian manifolds, local geometry and equivalence of distributions and sub-Riemannian structures, regularity of the Hausdorff volume, etc.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Honoring Andrei Agrachev's 60th birthday, this volume presents recent advances in the interaction between Geometric Control Theory and sub-Riemannian geometry. On the one hand, Geometric Control Theory used the differential geometric and Lie algebraic language for studying controllability, motion planning, stabilizability and optimality for control systems. The geometric approach turned out to be fruitful in applications to robotics, vision modeling, mathematical physics etc. On the other hand, Riemannian geometry and its generalizations, such as sub-Riemannian, Finslerian geometry etc., have been actively adopting methods developed in the scope of geometric control. Application of these methods has led to important results regarding geometry of sub-Riemannian spaces, regularity of sub-Riemannian distances, properties of the group of diffeomorphisms of sub-Riemannian manifolds, local geometry and equivalence of distributions and sub-Riemannian structures, regularity of the Hausdorff volume, etc.

More books from Springer International Publishing

Cover of the book Precision Agriculture: Technology and Economic Perspectives by
Cover of the book Current Trends in Web Engineering by
Cover of the book Quasispecies: From Theory to Experimental Systems by
Cover of the book Grammar, Philosophy, and Logic by
Cover of the book Ordinary Differential Equations and Mechanical Systems by
Cover of the book Force-Controlled Robotic Assembly Processes of Rigid and Flexible Objects by
Cover of the book The Quality of Democracy in Korea by
Cover of the book Geodynamic Evolution of the Southernmost Andes by
Cover of the book Technology and the End of Authority by
Cover of the book LATIN 2018: Theoretical Informatics by
Cover of the book Gamification in Learning and Education by
Cover of the book Lasers in Materials Science by
Cover of the book Universal Access in Human-Computer Interaction. Methods, Technologies, and Users by
Cover of the book Advances in Computational Intelligence by
Cover of the book The Drivers of Digital Transformation by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy