Handbook of Complex Analysis

Geometric Function Theory

Nonfiction, Science & Nature, Mathematics, Mathematical Analysis
Cover of the book Handbook of Complex Analysis by , Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780080495170
Publisher: Elsevier Science Publication: December 9, 2004
Imprint: North Holland Language: English
Author:
ISBN: 9780080495170
Publisher: Elsevier Science
Publication: December 9, 2004
Imprint: North Holland
Language: English

Geometric Function Theory is that part of Complex Analysis which covers the theory of conformal and quasiconformal mappings.

Beginning with the classical Riemann mapping theorem, there is a lot of existence theorems for canonical conformal mappings. On the other side there is an extensive theory of qualitative properties of conformal and quasiconformal mappings, concerning mainly a prior estimates, so called distortion theorems (including the Bieberbach conjecture with the proof of the Branges). Here a starting point was the classical Scharz lemma, and then Koebe's distortion theorem.

There are several connections to mathematical physics, because of the relations to potential theory (in the plane). The Handbook of Geometric Function Theory contains also an article about constructive methods and further a Bibliography including applications eg: to electroxtatic problems, heat conduction, potential flows (in the plane).

· A collection of independent survey articles in the field of GeometricFunction Theory
· Existence theorems and qualitative properties of conformal and quasiconformal mappings
· A bibliography, including many hints to applications in electrostatics, heat conduction, potential flows (in the plane).

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Geometric Function Theory is that part of Complex Analysis which covers the theory of conformal and quasiconformal mappings.

Beginning with the classical Riemann mapping theorem, there is a lot of existence theorems for canonical conformal mappings. On the other side there is an extensive theory of qualitative properties of conformal and quasiconformal mappings, concerning mainly a prior estimates, so called distortion theorems (including the Bieberbach conjecture with the proof of the Branges). Here a starting point was the classical Scharz lemma, and then Koebe's distortion theorem.

There are several connections to mathematical physics, because of the relations to potential theory (in the plane). The Handbook of Geometric Function Theory contains also an article about constructive methods and further a Bibliography including applications eg: to electroxtatic problems, heat conduction, potential flows (in the plane).

· A collection of independent survey articles in the field of GeometricFunction Theory
· Existence theorems and qualitative properties of conformal and quasiconformal mappings
· A bibliography, including many hints to applications in electrostatics, heat conduction, potential flows (in the plane).

More books from Elsevier Science

Cover of the book Advances in Agronomy by
Cover of the book Law Librarianship in Academic Libraries by
Cover of the book Geological Controls for Gas Hydrates and Unconventionals by
Cover of the book Animal Metamorphosis by
Cover of the book Particles at Interfaces by
Cover of the book Progress in Medicinal Chemistry by
Cover of the book Pattern Formations and Oscillatory Phenomena by
Cover of the book Bio-Based Plant Oil Polymers and Composites by
Cover of the book Encyclopedia of Security Management by
Cover of the book Cloud Data Centers and Cost Modeling by
Cover of the book Optical Performance Monitoring by
Cover of the book Sensory Functions by
Cover of the book The Laboratory Rat by
Cover of the book Performance Vehicle Dynamics by
Cover of the book Statistical Bioinformatics with R by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy