Handbook of Simulation Optimization

Business & Finance, Management & Leadership, Operations Research, Nonfiction, Computers
Cover of the book Handbook of Simulation Optimization by , Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781493913848
Publisher: Springer New York Publication: November 13, 2014
Imprint: Springer Language: English
Author:
ISBN: 9781493913848
Publisher: Springer New York
Publication: November 13, 2014
Imprint: Springer
Language: English

The Handbook of Simulation Optimization presents an overview of the state of the art of simulation optimization, providing a survey of the most well-established approaches for optimizing stochastic simulation models and a sampling of recent research advances in theory and methodology. Leading contributors cover such topics as discrete optimization via simulation, ranking and selection, efficient simulation budget allocation, random search methods, response surface methodology, stochastic gradient estimation, stochastic approximation, sample average approximation, stochastic constraints, variance reduction techniques, model-based stochastic search methods and Markov decision processes.

This single volume should serve as a reference for those already in the field and as a means for those new to the field for understanding and applying the main approaches. The intended audience includes researchers, practitioners and graduate students in the business/engineering fields of operations research, management science, operations management and stochastic control, as well as in economics/finance and computer science.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The Handbook of Simulation Optimization presents an overview of the state of the art of simulation optimization, providing a survey of the most well-established approaches for optimizing stochastic simulation models and a sampling of recent research advances in theory and methodology. Leading contributors cover such topics as discrete optimization via simulation, ranking and selection, efficient simulation budget allocation, random search methods, response surface methodology, stochastic gradient estimation, stochastic approximation, sample average approximation, stochastic constraints, variance reduction techniques, model-based stochastic search methods and Markov decision processes.

This single volume should serve as a reference for those already in the field and as a means for those new to the field for understanding and applying the main approaches. The intended audience includes researchers, practitioners and graduate students in the business/engineering fields of operations research, management science, operations management and stochastic control, as well as in economics/finance and computer science.

More books from Springer New York

Cover of the book The Apollo Lunar Samples by
Cover of the book Principles of Solidification by
Cover of the book MR Spectroscopy of Pediatric Brain Disorders by
Cover of the book Digital Da Vinci by
Cover of the book Friendship and Social Interaction by
Cover of the book Light Pollution by
Cover of the book Astronomy and the Climate Crisis by
Cover of the book Telephone and Helpdesk Skills by
Cover of the book Encephalitis Lethargica by
Cover of the book Energy, Policy, and the Environment by
Cover of the book Telescopes and Techniques by
Cover of the book Topics in Model Validation and Uncertainty Quantification, Volume 5 by
Cover of the book Neurology by
Cover of the book Residue Reviews by
Cover of the book Diffuse Malignant Mesothelioma by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy