Author: | Jacques Hadamard | ISBN: | 1230001137477 |
Publisher: | E H | Publication: | March 12, 2016 |
Imprint: | Language: | French |
Author: | Jacques Hadamard |
ISBN: | 1230001137477 |
Publisher: | E H |
Publication: | March 12, 2016 |
Imprint: | |
Language: | French |
Si on se rappelle à quel point l’œuvre de Poincaré est comme adéquate à toute la science mathématique, pure ou appliquée, que notre époque a produite, et la pénètre dans toutes ses manifestations, on aura compris par avance que la partie en quelque sorte centrale de cette œuvre corresponde au problème qui joue lui-même le rôle principal dans les mathématiques modernes. Ce problème, que les applications au monde physique ont imposé dès la création du calcul infinitésimal, est l’intégration des équations différentielles et aux dérivées partielles. «… Les efforts des savants ont toujours tendu à résoudre le phénomène complexe donné directement par l’expérience en un nombre très grand de phénomènes élémentaires. Et cela,… d’abord dans le temps. Au lieu d’embrasser dans son ensemble le développement progressif d’un phénomène, on cherche simplement à relier chaque instant à l’instant immédiatement antérieur ; on admet que l’état actuel du monde ne dépend que du passé le plus proche, sans être directement influencé, pour ainsi dire, par le souvenir d’un passé lointain. Grâce à ce postulat, au lieu d’éluder directement toute la succession des phénomènes, on peut se borner à en écrire « l’équation différentielle » ; aux lois de Kepler, on substitue celle de Newton ». Les lois physiques, — ou plutôt les hypothèses physiques — qui servent de point de départ font donc connaître directement le devenir d’un phénomène ou, suivant une expression qui a cours en mathématiques, font connaître des propriétés de sa variation instantanée (par exemple, de la vitesse d’un point ou de son accélération). Ceci, autrement dit, donne des relations entre états infiniment voisins de ce phénomène. Ces relations dont nous essaierons plus loin de donner une idée par quelques exemples simples, s’appellent des équations différentielles. Il reste à les intégrer, c’est-à-dire à déduire de ces relations entre états infiniment voisins, celles qui existent entre deux états quelconques, l’un considéré comme initial, l’autre comme final, du même phénomène. Or, sauf dans des cas tout exceptionnels, ce problème offre de hautes difficultés. Encore ce que nous venons de dire suppose-t-il que la décomposition en phénomènes élémentaires, dont nous parlions tout à l’heure avec Poincaré, se fasse exclusivement dans le temps. C’est le cas du mouvement simultané des planètes qui composent le système solaire, lorsque l’on considère chacune d’elles comme réduite à un simple point...
Si on se rappelle à quel point l’œuvre de Poincaré est comme adéquate à toute la science mathématique, pure ou appliquée, que notre époque a produite, et la pénètre dans toutes ses manifestations, on aura compris par avance que la partie en quelque sorte centrale de cette œuvre corresponde au problème qui joue lui-même le rôle principal dans les mathématiques modernes. Ce problème, que les applications au monde physique ont imposé dès la création du calcul infinitésimal, est l’intégration des équations différentielles et aux dérivées partielles. «… Les efforts des savants ont toujours tendu à résoudre le phénomène complexe donné directement par l’expérience en un nombre très grand de phénomènes élémentaires. Et cela,… d’abord dans le temps. Au lieu d’embrasser dans son ensemble le développement progressif d’un phénomène, on cherche simplement à relier chaque instant à l’instant immédiatement antérieur ; on admet que l’état actuel du monde ne dépend que du passé le plus proche, sans être directement influencé, pour ainsi dire, par le souvenir d’un passé lointain. Grâce à ce postulat, au lieu d’éluder directement toute la succession des phénomènes, on peut se borner à en écrire « l’équation différentielle » ; aux lois de Kepler, on substitue celle de Newton ». Les lois physiques, — ou plutôt les hypothèses physiques — qui servent de point de départ font donc connaître directement le devenir d’un phénomène ou, suivant une expression qui a cours en mathématiques, font connaître des propriétés de sa variation instantanée (par exemple, de la vitesse d’un point ou de son accélération). Ceci, autrement dit, donne des relations entre états infiniment voisins de ce phénomène. Ces relations dont nous essaierons plus loin de donner une idée par quelques exemples simples, s’appellent des équations différentielles. Il reste à les intégrer, c’est-à-dire à déduire de ces relations entre états infiniment voisins, celles qui existent entre deux états quelconques, l’un considéré comme initial, l’autre comme final, du même phénomène. Or, sauf dans des cas tout exceptionnels, ce problème offre de hautes difficultés. Encore ce que nous venons de dire suppose-t-il que la décomposition en phénomènes élémentaires, dont nous parlions tout à l’heure avec Poincaré, se fasse exclusivement dans le temps. C’est le cas du mouvement simultané des planètes qui composent le système solaire, lorsque l’on considère chacune d’elles comme réduite à un simple point...