Imaginary Mathematics for Computer Science

Nonfiction, Science & Nature, Mathematics, Discrete Mathematics, Computers, Database Management, Data Processing, General Computing
Cover of the book Imaginary Mathematics for Computer Science by John Vince, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: John Vince ISBN: 9783319946375
Publisher: Springer International Publishing Publication: August 16, 2018
Imprint: Springer Language: English
Author: John Vince
ISBN: 9783319946375
Publisher: Springer International Publishing
Publication: August 16, 2018
Imprint: Springer
Language: English

The imaginary unit i = √-1 has been used by mathematicians for nearly five-hundred years, during which time its physical meaning has been a constant challenge. Unfortunately, René Descartes referred to it as “imaginary”, and the use of the term “complex number” compounded the unnecessary mystery associated with this amazing object. Today, i = √-1 has found its way into virtually every branch of mathematics, and is widely employed in physics and science, from solving problems in electrical engineering to quantum field theory.

John Vince describes the evolution of the imaginary unit from the roots of quadratic and cubic equations, Hamilton’s quaternions, Cayley’s octonions, to Grassmann’s geometric algebra. In spite of the aura of mystery that surrounds the subject, John Vince makes the subject accessible and very readable.

The first two chapters cover the imaginary unit and its integration with real numbers. Chapter 3 describes how complex numbers work with matrices, and shows how to compute complex eigenvalues and eigenvectors. Chapters 4 and 5 cover Hamilton’s invention of quaternions, and Cayley’s development of octonions, respectively. Chapter 6 provides a brief introduction to geometric algebra, which possesses many of the imaginary qualities of quaternions, but works in space of any dimension. The second half of the book is devoted to applications of complex numbers, quaternions and geometric algebra. John Vince explains how complex numbers simplify trigonometric identities, wave combinations and phase differences in circuit analysis, and how geometric algebra resolves geometric problems, and quaternions rotate 3D vectors. There are two short chapters on the Riemann hypothesis and the Mandelbrot set, both of which use complex numbers. The last chapter references the role of complex numbers in quantum mechanics, and ends with Schrödinger’s famous wave equation.

Filled with lots of clear examples and useful illustrations, this compact book provides an excellent introduction to imaginary mathematics for computer science.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The imaginary unit i = √-1 has been used by mathematicians for nearly five-hundred years, during which time its physical meaning has been a constant challenge. Unfortunately, René Descartes referred to it as “imaginary”, and the use of the term “complex number” compounded the unnecessary mystery associated with this amazing object. Today, i = √-1 has found its way into virtually every branch of mathematics, and is widely employed in physics and science, from solving problems in electrical engineering to quantum field theory.

John Vince describes the evolution of the imaginary unit from the roots of quadratic and cubic equations, Hamilton’s quaternions, Cayley’s octonions, to Grassmann’s geometric algebra. In spite of the aura of mystery that surrounds the subject, John Vince makes the subject accessible and very readable.

The first two chapters cover the imaginary unit and its integration with real numbers. Chapter 3 describes how complex numbers work with matrices, and shows how to compute complex eigenvalues and eigenvectors. Chapters 4 and 5 cover Hamilton’s invention of quaternions, and Cayley’s development of octonions, respectively. Chapter 6 provides a brief introduction to geometric algebra, which possesses many of the imaginary qualities of quaternions, but works in space of any dimension. The second half of the book is devoted to applications of complex numbers, quaternions and geometric algebra. John Vince explains how complex numbers simplify trigonometric identities, wave combinations and phase differences in circuit analysis, and how geometric algebra resolves geometric problems, and quaternions rotate 3D vectors. There are two short chapters on the Riemann hypothesis and the Mandelbrot set, both of which use complex numbers. The last chapter references the role of complex numbers in quantum mechanics, and ends with Schrödinger’s famous wave equation.

Filled with lots of clear examples and useful illustrations, this compact book provides an excellent introduction to imaginary mathematics for computer science.

More books from Springer International Publishing

Cover of the book Interpretations of Luxury by John Vince
Cover of the book Geometric Invariant Theory for Polarized Curves by John Vince
Cover of the book The Politics of Securitization in Democratic Indonesia by John Vince
Cover of the book Dynamics and Control of Advanced Structures and Machines by John Vince
Cover of the book Pattern Recognition by John Vince
Cover of the book Principles of Performance and Reliability Modeling and Evaluation by John Vince
Cover of the book Tangible Modeling with Open Source GIS by John Vince
Cover of the book Interactive Storytelling by John Vince
Cover of the book Nonlinear Dynamics, Volume 1 by John Vince
Cover of the book The Sociolinguistics of Hip-hop as Critical Conscience by John Vince
Cover of the book Cultural, Autobiographical and Absent Memories of Orphanhood by John Vince
Cover of the book Low-Angle Polarized Neutron and X-Ray Scattering from Magnetic Nanolayers and Nanostructures by John Vince
Cover of the book Yeasts in Natural Ecosystems: Diversity by John Vince
Cover of the book Axiomatic Design in Large Systems by John Vince
Cover of the book International Trade Policy and European Industry by John Vince
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy