Information Science for Materials Discovery and Design

Nonfiction, Science & Nature, Technology, Nanotechnology, Material Science
Cover of the book Information Science for Materials Discovery and Design by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319238715
Publisher: Springer International Publishing Publication: December 12, 2015
Imprint: Springer Language: English
Author:
ISBN: 9783319238715
Publisher: Springer International Publishing
Publication: December 12, 2015
Imprint: Springer
Language: English

This book deals with an information-driven approach to plan materials discovery and design, iterative learning. The authors present contrasting but complementary approaches, such as those based on high throughput calculations, combinatorial experiments or data driven discovery, together with machine-learning methods. Similarly, statistical methods successfully applied in other fields, such as biosciences, are presented. The content spans from materials science to information science to reflect the cross-disciplinary nature of the field. A perspective is presented that offers a paradigm (codesign loop for materials design) to involve iteratively learning from experiments and calculations to develop materials with optimum properties. Such a loop requires the elements of incorporating domain materials knowledge, a database of descriptors (the genes), a surrogate or statistical model developed to predict a given property with uncertainties, performing adaptive experimental design to guide the next experiment or calculation and aspects of high throughput calculations as well as experiments. The book is about manufacturing with the aim to halving the time to discover and design new materials. Accelerating discovery relies on using large databases, computation, and mathematics in the material sciences in a manner similar to the way used to in the Human Genome Initiative. Novel approaches are therefore called to explore the enormous phase space presented by complex materials and processes. To achieve the desired performance gains, a predictive capability is needed to guide experiments and computations in the most fruitful directions by reducing not successful trials. Despite advances in computation and experimental techniques, generating vast arrays of data; without a clear way of linkage to models, the full value of data driven discovery cannot be realized. Hence, along with experimental, theoretical and computational materials science, we need to add a “fourth leg’’ to our toolkit to make the “Materials Genome'' a reality, the science of Materials Informatics.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book deals with an information-driven approach to plan materials discovery and design, iterative learning. The authors present contrasting but complementary approaches, such as those based on high throughput calculations, combinatorial experiments or data driven discovery, together with machine-learning methods. Similarly, statistical methods successfully applied in other fields, such as biosciences, are presented. The content spans from materials science to information science to reflect the cross-disciplinary nature of the field. A perspective is presented that offers a paradigm (codesign loop for materials design) to involve iteratively learning from experiments and calculations to develop materials with optimum properties. Such a loop requires the elements of incorporating domain materials knowledge, a database of descriptors (the genes), a surrogate or statistical model developed to predict a given property with uncertainties, performing adaptive experimental design to guide the next experiment or calculation and aspects of high throughput calculations as well as experiments. The book is about manufacturing with the aim to halving the time to discover and design new materials. Accelerating discovery relies on using large databases, computation, and mathematics in the material sciences in a manner similar to the way used to in the Human Genome Initiative. Novel approaches are therefore called to explore the enormous phase space presented by complex materials and processes. To achieve the desired performance gains, a predictive capability is needed to guide experiments and computations in the most fruitful directions by reducing not successful trials. Despite advances in computation and experimental techniques, generating vast arrays of data; without a clear way of linkage to models, the full value of data driven discovery cannot be realized. Hence, along with experimental, theoretical and computational materials science, we need to add a “fourth leg’’ to our toolkit to make the “Materials Genome'' a reality, the science of Materials Informatics.

More books from Springer International Publishing

Cover of the book Climate Change in North America by
Cover of the book Mechatronics: Ideas, Challenges, Solutions and Applications by
Cover of the book Semantics, Analytics, Visualization. Enhancing Scholarly Data by
Cover of the book Hegel, Marx, and the Necessity and Freedom Dialectic by
Cover of the book Patentism Replacing Capitalism by
Cover of the book Transactions on Modularity and Composition I by
Cover of the book Anthropological Perspectives on Intangible Cultural Heritage by
Cover of the book Fixed Point Theory in Distance Spaces by
Cover of the book Therapeutic rTMS in Neurology by
Cover of the book Supply Chain Finance and Blockchain Technology by
Cover of the book Social Class and State Power by
Cover of the book Contemporary Demographic Transformations in China, India and Indonesia by
Cover of the book The Roads to Congress 2016 by
Cover of the book Diversity, Affect and Embodiment in Organizing by
Cover of the book Bridging the Semantic Gap in Image and Video Analysis by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy