Inside the International Space Station (ISS): NASA Electrical Power System Astronaut Training Manual

Nonfiction, Science & Nature, Science, Physics, Astronomy
Cover of the book Inside the International Space Station (ISS): NASA Electrical Power System Astronaut Training Manual by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781466036161
Publisher: Progressive Management Publication: December 15, 2011
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781466036161
Publisher: Progressive Management
Publication: December 15, 2011
Imprint: Smashwords Edition
Language: English

Learn about the International Space Station (ISS) from the textbooks used by the astronauts! These astronaut and flight controller training manuals, produced by the Mission Operations Directorate (Space Flight Training Division branch) at NASA's Johnson Space Center, represent a major part of the formal flight crew training process. The manuals and workbooks are extremely detailed and comprehensive, and are designed for self-study. A full listing of all acronyms and abbreviations used in the text is included. They provide a superb way to learn about Station systems, hardware, and operational procedures. Special emphasis on crew interaction with the displays, controls, and hardware is included.

This training manual covers the ISS electrical power system (EPS). The International Space Station (ISS) requires electrical power for all ISS functions: command and control, communications, lighting, life support, etc. Both the Russian Orbital Segment (ROS) and U.S. On-orbit Segment (USOS) have the capability and responsibility for providing on-orbit power sources for their own segments, as well as power sharing, as required, to support assembly and ISS operations for all International Partners. The ROS and USOS Electrical Power Systems (EPSs) are responsible for providing a safeguarded source of uninterrupted electrical power for ISS. To accomplish this, the EPS must generate and store power, convert and distribute power to users, protect both the system and users from electrical hazards, and provide the means for controlling and monitoring system performance. These functions are performed by several pieces of interrelated ISS hardware/software, which are each discussed in detail in Section 2. However, to provide the proper context for the detailed discussion, it is helpful to take a "big picture" look at the EPS system, its responsibilities, architecture, and components.

The USOS EPS is designed to be a distributed power system; i.e., power is produced in localized areas and then distributed to various modules. This functional design is similar to the process used by municipal electric utilities to provide electrical power to users.

High voltage power or "primary power" is generated in a centralized power plant and distributed throughout the area via transmission lines.

Before power is delivered to users, the voltage is stepped down by a transformer to the user-required regulated voltage level.

"Secondary power" (power transmitted at the user-required voltage level) is distributed to nearby locations and is further divided and routed by distribution boxes to provide electricity to many individual users.

An analogous process is used on ISS. USOS EPS design incorporates modules (called Photovoltaic Modules) that are dedicated to generating and storing power. These modules or "power plants" provide two sources of primary power (160 V dc) called power channels. During both insolation and eclipse, each power channel provides a continuous supply of power for distribution throughout ISS. Primary power is then converted to secondary power (124 V dc) in proximity to its intended users. From the converters, secondary power is distributed along a variety of paths to individual ISS power users. This two-level power system allows EPS to compensate for factors such as line losses, hardware degradation, and solar array aging within the primary power system while providing consistent secondary voltage for ISS users. Per this distributed design, primary power is used when transmission over significant distances is required and secondary power is for distribution locally.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Learn about the International Space Station (ISS) from the textbooks used by the astronauts! These astronaut and flight controller training manuals, produced by the Mission Operations Directorate (Space Flight Training Division branch) at NASA's Johnson Space Center, represent a major part of the formal flight crew training process. The manuals and workbooks are extremely detailed and comprehensive, and are designed for self-study. A full listing of all acronyms and abbreviations used in the text is included. They provide a superb way to learn about Station systems, hardware, and operational procedures. Special emphasis on crew interaction with the displays, controls, and hardware is included.

This training manual covers the ISS electrical power system (EPS). The International Space Station (ISS) requires electrical power for all ISS functions: command and control, communications, lighting, life support, etc. Both the Russian Orbital Segment (ROS) and U.S. On-orbit Segment (USOS) have the capability and responsibility for providing on-orbit power sources for their own segments, as well as power sharing, as required, to support assembly and ISS operations for all International Partners. The ROS and USOS Electrical Power Systems (EPSs) are responsible for providing a safeguarded source of uninterrupted electrical power for ISS. To accomplish this, the EPS must generate and store power, convert and distribute power to users, protect both the system and users from electrical hazards, and provide the means for controlling and monitoring system performance. These functions are performed by several pieces of interrelated ISS hardware/software, which are each discussed in detail in Section 2. However, to provide the proper context for the detailed discussion, it is helpful to take a "big picture" look at the EPS system, its responsibilities, architecture, and components.

The USOS EPS is designed to be a distributed power system; i.e., power is produced in localized areas and then distributed to various modules. This functional design is similar to the process used by municipal electric utilities to provide electrical power to users.

High voltage power or "primary power" is generated in a centralized power plant and distributed throughout the area via transmission lines.

Before power is delivered to users, the voltage is stepped down by a transformer to the user-required regulated voltage level.

"Secondary power" (power transmitted at the user-required voltage level) is distributed to nearby locations and is further divided and routed by distribution boxes to provide electricity to many individual users.

An analogous process is used on ISS. USOS EPS design incorporates modules (called Photovoltaic Modules) that are dedicated to generating and storing power. These modules or "power plants" provide two sources of primary power (160 V dc) called power channels. During both insolation and eclipse, each power channel provides a continuous supply of power for distribution throughout ISS. Primary power is then converted to secondary power (124 V dc) in proximity to its intended users. From the converters, secondary power is distributed along a variety of paths to individual ISS power users. This two-level power system allows EPS to compensate for factors such as line losses, hardware degradation, and solar array aging within the primary power system while providing consistent secondary voltage for ISS users. Per this distributed design, primary power is used when transmission over significant distances is required and secondary power is for distribution locally.

More books from Progressive Management

Cover of the book The Space Shuttle Decision: NASA's Search for a Reusable Space Vehicle - Excellent Account of the Political and Engineering Challenges, Space Station Concepts, Mars, Air Force Role, Nixon and Budget by Progressive Management
Cover of the book Increasing Airpower's Effectiveness: Applying the U.S. Army's Operational Design Methodology to Airpower in Warfare - North Vietnam, Operation CASTOR and the Battle for Dien Bien Phu, Linebacker II by Progressive Management
Cover of the book 21st Century Adult Cancer Sourcebook: Bladder Cancer, Urinary Bladder Neoplasms - Clinical Data for Patients, Families, and Physicians by Progressive Management
Cover of the book From The Line In The Sand: Accounts of USAF Company Grade Officers in Support of Desert Shield / Desert Storm by Progressive Management
Cover of the book Case Studies in Strategic Bombardment: World War II, British and American Air Offensive, Atom Bomb, Pacific, Korea, Vietnam, Gulf War, Doctrine, Planning, Operations, From the B-17 to the B-2 Bomber by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: Infantry Rifle Platoon and Squad Field Manual - FM 7-8 (Value-Added Professional Format Series) by Progressive Management
Cover of the book America's Space Shuttle: Extravehicular Mobility Unit (EMU) Systems NASA Astronaut Training Manual (EMU SYS 2102) by Progressive Management
Cover of the book Airpower and the Battle of Khafji: Setting the Record Straight - Desert Storm Persian Gulf War Three Day Battle, Did Airpower Halt Iraqi Attack into Saudi Arabia, ISR, Air-Ground Cooperation by Progressive Management
Cover of the book MH-53J/M PAVE LOW III/IV Systems Engineering Case Study: Challenges of Night Rescue and Night Vision; Technical Details and Program History by Progressive Management
Cover of the book Between Heroes and Guardians: General Lyman L. Lemnitzer and General Charles H. Bonesteel III - World War II and Cold War, Operation Torch, Project Solarium, Interwar Period and Wartime Careers by Progressive Management
Cover of the book Orion: America's Next Generation Spacecraft - A Look at the Design, Development, and Testing of NASA's Multi-Purpose Crew Vehicle (MPCV) for Deep-Space Manned Exploration Flights by Progressive Management
Cover of the book Silver Wings, Golden Valor: The USAF Remembers Korea - Air Warfare and Dominance, Air-to-Ground Operations, Lessons for Kosovo, Humorous and Sad Recollections, Frank Opinions about the Limited War by Progressive Management
Cover of the book 21st Century Adult Cancer Sourcebook: Vaginal Cancer - Clinical Data for Patients, Families, and Physicians by Progressive Management
Cover of the book 2015 Essential Guide to the Deflation Threat: Bernanke's Famous Speech, Risk of Deflationary Spiral, Policies to Prevent and Cure, Japan's Experience, Great Depression, Study Reports, Liquidity Trap by Progressive Management
Cover of the book Spyplanes and National Reconnaissance in the 20th Century: The Amazing Story of the U-2 Program, A-12 Oxcart, Francis Gary Powers Incident, Cuba Missile Crisis, Aquatone and Genetrix Projects by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy