Introduction to the Physics of Nanoelectronics

Nonfiction, Science & Nature, Technology, Electronics
Cover of the book Introduction to the Physics of Nanoelectronics by , Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780857095886
Publisher: Elsevier Science Publication: March 28, 2012
Imprint: Woodhead Publishing Language: English
Author:
ISBN: 9780857095886
Publisher: Elsevier Science
Publication: March 28, 2012
Imprint: Woodhead Publishing
Language: English

This book provides an introduction to the physics of nanoelectronics, with a focus on the theoretical aspects of nanoscale devices. The book begins with an overview of the mathematics and quantum mechanics pertaining to nanoscale electronics, to facilitate the understanding of subsequent chapters. It goes on to encompass quantum electronics, spintronics, Hall effects, carbon and graphene electronics, and topological physics in nanoscale devices.

Theoretical methodology is developed using quantum mechanical and non-equilibrium Green’s function (NEGF) techniques to calculate electronic currents and elucidate their transport properties at the atomic scale. The spin Hall effect is explained and its application to the emerging field of spintronics – where an electron’s spin as well as its charge is utilised – is discussed. Topological dynamics and gauge potential are introduced with the relevant mathematics, and their application in nanoelectronic systems is explained. Graphene, one of the most promising carbon-based nanostructures for nanoelectronics, is also explored.

  • Begins with an overview of the mathematics and quantum mechanics pertaining to nanoscale electronics
  • Encompasses quantum electronics, spintronics, Hall effects, carbon and graphene electronics, and topological physics in nanoscale devices
  • Comprehensively introduces topological dynamics and gauge potential with the relevant mathematics, and extensively discusses their application in nanoelectronic systems
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book provides an introduction to the physics of nanoelectronics, with a focus on the theoretical aspects of nanoscale devices. The book begins with an overview of the mathematics and quantum mechanics pertaining to nanoscale electronics, to facilitate the understanding of subsequent chapters. It goes on to encompass quantum electronics, spintronics, Hall effects, carbon and graphene electronics, and topological physics in nanoscale devices.

Theoretical methodology is developed using quantum mechanical and non-equilibrium Green’s function (NEGF) techniques to calculate electronic currents and elucidate their transport properties at the atomic scale. The spin Hall effect is explained and its application to the emerging field of spintronics – where an electron’s spin as well as its charge is utilised – is discussed. Topological dynamics and gauge potential are introduced with the relevant mathematics, and their application in nanoelectronic systems is explained. Graphene, one of the most promising carbon-based nanostructures for nanoelectronics, is also explored.

More books from Elsevier Science

Cover of the book Mechanical Design Engineering Handbook by
Cover of the book Physiology of the Eye by
Cover of the book Principles and Applications of Quantum Chemistry by
Cover of the book Graphene by
Cover of the book Fundamentals of Molecular Catalysis by
Cover of the book The ABCs of Learning Disabilities by
Cover of the book Stress: Concepts, Cognition, Emotion, and Behavior by
Cover of the book Fundamental Biomaterials: Metals by
Cover of the book Nuclear Mechanics and Genome Regulation by
Cover of the book Object-oriented Programming with Smalltalk by
Cover of the book Polymer Science: A Comprehensive Reference by
Cover of the book System Engineering for IMS Networks by
Cover of the book Non-Crimp Fabric Composites by
Cover of the book The Automotive Industry and the Environment by
Cover of the book Planning and Designing Research Animal Facilities by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy