Introductory Complex Analysis

Nonfiction, Science & Nature, Mathematics, Number Theory, Applied
Cover of the book Introductory Complex Analysis by Richard A. Silverman, Dover Publications
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Richard A. Silverman ISBN: 9780486318523
Publisher: Dover Publications Publication: April 15, 2013
Imprint: Dover Publications Language: English
Author: Richard A. Silverman
ISBN: 9780486318523
Publisher: Dover Publications
Publication: April 15, 2013
Imprint: Dover Publications
Language: English

Introductory Complex Analysis is a scaled-down version of A. I. Markushevich's masterly three-volume "Theory of Functions of a Complex Variable." Dr. Richard Silverman, the editor and translator of the original, has prepared this shorter version expressly to meet the needs of a one-year graduate or undergraduate course in complex analysis. In his selection and adaptation of the more elementary topics from the original larger work, he was guided by a brief course prepared by Markushevich himself.
The book begins with fundamentals, with a definition of complex numbers, their geometric representation, their algebra, powers and roots of complex numbers, set theory as applied to complex analysis, and complex functions and sequences. The notions of proper and improper complex numbers and of infinity are fully and clearly explained, as is stereographic projection. Individual chapters then cover limits and continuity, differentiation of analytic functions, polynomials and rational functions, Mobius transformations with their circle-preserving property, exponentials and logarithms, complex integrals and the Cauchy theorem , complex series and uniform convergence, power series, Laurent series and singular points, the residue theorem and its implications, harmonic functions (a subject too often slighted in first courses in complex analysis), partial fraction expansions, conformal mapping, and analytic continuation.
Elementary functions are given a more detailed treatment than is usual for a book at this level. Also, there is an extended discussion of the Schwarz-Christolfel transformation, which is particularly important for applications.
There is a great abundance of worked-out examples, and over three hundred problems (some with hints and answers), making this an excellent textbook for classroom use as well as for independent study. A noteworthy feature is the fact that the parentage of this volume makes it possible for the student to pursue various advanced topics in more detail in the three-volume original, without the problem of having to adjust to a new terminology and notation .
In this way, Introductory**Complex Analysis serves as an introduction not only to the whole field of complex analysis, but also to the magnum opus of an important contemporary Russian mathematician.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Introductory Complex Analysis is a scaled-down version of A. I. Markushevich's masterly three-volume "Theory of Functions of a Complex Variable." Dr. Richard Silverman, the editor and translator of the original, has prepared this shorter version expressly to meet the needs of a one-year graduate or undergraduate course in complex analysis. In his selection and adaptation of the more elementary topics from the original larger work, he was guided by a brief course prepared by Markushevich himself.
The book begins with fundamentals, with a definition of complex numbers, their geometric representation, their algebra, powers and roots of complex numbers, set theory as applied to complex analysis, and complex functions and sequences. The notions of proper and improper complex numbers and of infinity are fully and clearly explained, as is stereographic projection. Individual chapters then cover limits and continuity, differentiation of analytic functions, polynomials and rational functions, Mobius transformations with their circle-preserving property, exponentials and logarithms, complex integrals and the Cauchy theorem , complex series and uniform convergence, power series, Laurent series and singular points, the residue theorem and its implications, harmonic functions (a subject too often slighted in first courses in complex analysis), partial fraction expansions, conformal mapping, and analytic continuation.
Elementary functions are given a more detailed treatment than is usual for a book at this level. Also, there is an extended discussion of the Schwarz-Christolfel transformation, which is particularly important for applications.
There is a great abundance of worked-out examples, and over three hundred problems (some with hints and answers), making this an excellent textbook for classroom use as well as for independent study. A noteworthy feature is the fact that the parentage of this volume makes it possible for the student to pursue various advanced topics in more detail in the three-volume original, without the problem of having to adjust to a new terminology and notation .
In this way, Introductory**Complex Analysis serves as an introduction not only to the whole field of complex analysis, but also to the magnum opus of an important contemporary Russian mathematician.

More books from Dover Publications

Cover of the book The Art of Growing a Beard by Richard A. Silverman
Cover of the book Spanish Decorative Ironwork by Richard A. Silverman
Cover of the book North American Indian Life by Richard A. Silverman
Cover of the book Figure Sculpture in Wax and Plaster by Richard A. Silverman
Cover of the book Foundations of the Theory of Probability by Richard A. Silverman
Cover of the book Introduction to the Theory of Games by Richard A. Silverman
Cover of the book The Ego and the Id by Richard A. Silverman
Cover of the book A Gardener's Handbook of Plant Names by Richard A. Silverman
Cover of the book Philosophy of Mathematics and Deductive Structure in Euclid's Elements by Richard A. Silverman
Cover of the book New York Stories by Richard A. Silverman
Cover of the book 400 Traditional Tile Designs in Full Color by Richard A. Silverman
Cover of the book Get a Grip on Physics by Richard A. Silverman
Cover of the book Matrix Theory and Applications for Scientists and Engineers by Richard A. Silverman
Cover of the book Indian Sign Language by Richard A. Silverman
Cover of the book Operational Calculus in Two Variables and Its Applications by Richard A. Silverman
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy