Laser Velocimetry in Fluid Mechanics

Nonfiction, Science & Nature, Science, Physics, Mechanics
Cover of the book Laser Velocimetry in Fluid Mechanics by , Wiley
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781118569337
Publisher: Wiley Publication: January 9, 2013
Imprint: Wiley-ISTE Language: English
Author:
ISBN: 9781118569337
Publisher: Wiley
Publication: January 9, 2013
Imprint: Wiley-ISTE
Language: English

In fluid mechanics, velocity measurement is fundamental in order to improve the behavior knowledge of the flow. Velocity maps help us to understand the mean flow structure and its fluctuations, in order to further validate codes.
Laser velocimetry is an optical technique for velocity measurements; it is based on light scattering by tiny particles assumed to follow the flow, which allows the local fluid flow velocity and its fluctuations to be determined. It is a widely used non-intrusive technique to measure velocities in fluid flows, either locally or in a map.
This book presents the various techniques of laser velocimetry, as well as their specific qualities: local measurements or in plane maps, mean or instantaneous values, 3D measurements. Flow seeding with particles is described with currently used products, as well as the appropriate aerosol generators. Post-processing of data allows us to extract synthetic information from measurements and to perform comparisons with results issued from CFD codes. The principles and characteristics of the different available techniques, all based on the scattering of light by tiny particles embedded in the flow, are described in detail; showing how they deliver different information, either locally or in a map, mean values and turbulence characteristics.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

In fluid mechanics, velocity measurement is fundamental in order to improve the behavior knowledge of the flow. Velocity maps help us to understand the mean flow structure and its fluctuations, in order to further validate codes.
Laser velocimetry is an optical technique for velocity measurements; it is based on light scattering by tiny particles assumed to follow the flow, which allows the local fluid flow velocity and its fluctuations to be determined. It is a widely used non-intrusive technique to measure velocities in fluid flows, either locally or in a map.
This book presents the various techniques of laser velocimetry, as well as their specific qualities: local measurements or in plane maps, mean or instantaneous values, 3D measurements. Flow seeding with particles is described with currently used products, as well as the appropriate aerosol generators. Post-processing of data allows us to extract synthetic information from measurements and to perform comparisons with results issued from CFD codes. The principles and characteristics of the different available techniques, all based on the scattering of light by tiny particles embedded in the flow, are described in detail; showing how they deliver different information, either locally or in a map, mean values and turbulence characteristics.

More books from Wiley

Cover of the book Handbuch des Explosionsschutzes by
Cover of the book Issues in Finance by
Cover of the book Globalization and Technology by
Cover of the book Fractional Calculus with Applications in Mechanics by
Cover of the book The Art of Software Testing by
Cover of the book Internet Protocol-based Emergency Services by
Cover of the book Advances in Food Science and Technology by
Cover of the book I am Not a Brain by
Cover of the book Fearless Facilitation by
Cover of the book LINQ For Dummies by
Cover of the book Quantitative Investment Analysis by
Cover of the book Buddhism For Dummies by
Cover of the book The Exploratorium Science Snackbook by
Cover of the book The How and Why of One Variable Calculus by
Cover of the book A Companion to Mark Twain by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy