Lectures on Selected Topics in Mathematical Physics

Elliptic Functions and Elliptic Integrals

Nonfiction, Science & Nature, Science, Physics, Mathematical Physics
Cover of the book Lectures on Selected Topics in Mathematical Physics by William A. Schwalm, Morgan & Claypool Publishers
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: William A. Schwalm ISBN: 9781681740386
Publisher: Morgan & Claypool Publishers Publication: December 31, 2015
Imprint: IOP Concise Physics Language: English
Author: William A. Schwalm
ISBN: 9781681740386
Publisher: Morgan & Claypool Publishers
Publication: December 31, 2015
Imprint: IOP Concise Physics
Language: English

This volume is a basic introduction to certain aspects of elliptic functions and elliptic integrals. Primarily, the elliptic functions stand out as closed solutions to a class of physical and geometrical problems giving rise to nonlinear differential equations. While these nonlinear equations may not be the types of greatest interest currently, the fact that they are solvable exactly in terms of functions about which much is known makes up for this. The elliptic functions of Jacobi, or equivalently the Weierstrass elliptic functions, inhabit the literature on current problems in condensed matter and statistical physics, on solitons and conformal representations, and all sorts of famous problems in classical mechanics. The lectures on elliptic functions have evolved as part of the first semester of a course on theoretical and mathematical methods given to first and second year graduate students in physics and chemistry at the University of North Dakota. They are for graduate students or for researchers who want an elementary introduction to the subject that nevertheless leaves them with enough of the details to address real problems. The style is supposed to be informal. The intention is to introduce the subject as a moderate extension of ordinary trigonometry in which the reference circle is replaced by an ellipse. This entre depends upon fewer tools and has seemed less intimidating that other typical introductions to the subject that depend on some knowledge of complex variables. The first three lectures assume only calculus, including the chain rule and elementary knowledge of differential equations. In the later lectures, the complex analytic properties are introduced naturally so that a more complete study becomes possible.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This volume is a basic introduction to certain aspects of elliptic functions and elliptic integrals. Primarily, the elliptic functions stand out as closed solutions to a class of physical and geometrical problems giving rise to nonlinear differential equations. While these nonlinear equations may not be the types of greatest interest currently, the fact that they are solvable exactly in terms of functions about which much is known makes up for this. The elliptic functions of Jacobi, or equivalently the Weierstrass elliptic functions, inhabit the literature on current problems in condensed matter and statistical physics, on solitons and conformal representations, and all sorts of famous problems in classical mechanics. The lectures on elliptic functions have evolved as part of the first semester of a course on theoretical and mathematical methods given to first and second year graduate students in physics and chemistry at the University of North Dakota. They are for graduate students or for researchers who want an elementary introduction to the subject that nevertheless leaves them with enough of the details to address real problems. The style is supposed to be informal. The intention is to introduce the subject as a moderate extension of ordinary trigonometry in which the reference circle is replaced by an ellipse. This entre depends upon fewer tools and has seemed less intimidating that other typical introductions to the subject that depend on some knowledge of complex variables. The first three lectures assume only calculus, including the chain rule and elementary knowledge of differential equations. In the later lectures, the complex analytic properties are introduced naturally so that a more complete study becomes possible.

More books from Morgan & Claypool Publishers

Cover of the book Trust Extension as a Mechanism for Secure Code Execution on Commodity Computers by William A. Schwalm
Cover of the book Hyperbolic Metamaterials by William A. Schwalm
Cover of the book Declarative Logic Programming by William A. Schwalm
Cover of the book Relativity, Symmetry, and the Structure of Quantum Theory, Volume 2 by William A. Schwalm
Cover of the book Resource-Oriented Architecture Patterns for Webs of Data by William A. Schwalm
Cover of the book Outside the Research Lab, Volume 2 by William A. Schwalm
Cover of the book Cold Plasma Cancer Therapy by William A. Schwalm
Cover of the book Advances in Thermodynamics of the van der Waals Fluid by William A. Schwalm
Cover of the book The Melencolia Manifesto by William A. Schwalm
Cover of the book Excel VBA for Physicists by William A. Schwalm
Cover of the book Atoms and Photons and Quanta, Oh My! by William A. Schwalm
Cover of the book Metamaterial Multiverse by William A. Schwalm
Cover of the book Graphene Optics by William A. Schwalm
Cover of the book Ensemble Methods in Data Mining by William A. Schwalm
Cover of the book Game Theory for Data Science by William A. Schwalm
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy