Linear Models and Time-Series Analysis

Regression, ANOVA, ARMA and GARCH

Nonfiction, Science & Nature, Mathematics, Statistics
Cover of the book Linear Models and Time-Series Analysis by Marc S. Paolella, Wiley
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Marc S. Paolella ISBN: 9781119431985
Publisher: Wiley Publication: October 10, 2018
Imprint: Wiley Language: English
Author: Marc S. Paolella
ISBN: 9781119431985
Publisher: Wiley
Publication: October 10, 2018
Imprint: Wiley
Language: English

A comprehensive and timely edition on an emerging new trend in time series

Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH sets a strong foundation, in terms of distribution theory, for the linear model (regression and ANOVA), univariate time series analysis (ARMAX and GARCH), and some multivariate models associated primarily with modeling financial asset returns (copula-based structures and the discrete mixed normal and Laplace). It builds on the author's previous book, Fundamental Statistical Inference: A Computational Approach, which introduced the major concepts of statistical inference. Attention is explicitly paid to application and numeric computation, with examples of Matlab code throughout. The code offers a framework for discussion and illustration of numerics, and shows the mapping from theory to computation.

The topic of time series analysis is on firm footing, with numerous textbooks and research journals dedicated to it. With respect to the subject/technology, many chapters in Linear Models and Time-Series Analysis cover firmly entrenched topics (regression and ARMA). Several others are dedicated to very modern methods, as used in empirical finance, asset pricing, risk management, and portfolio optimization, in order to address the severe change in performance of many pension funds, and changes in how fund managers work.

  • Covers traditional time series analysis with new guidelines
  • Provides access to cutting edge topics that are at the forefront of financial econometrics and industry
  • Includes latest developments and topics such as financial returns data, notably also in a multivariate context
  • Written by a leading expert in time series analysis
  • Extensively classroom tested
  • Includes a tutorial on SAS
  • Supplemented with a companion website containing numerous Matlab programs
  • Solutions to most exercises are provided in the book

Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH is suitable for advanced masters students in statistics and quantitative finance, as well as doctoral students in economics and finance. It is also useful for quantitative financial practitioners in large financial institutions and smaller finance outlets.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

A comprehensive and timely edition on an emerging new trend in time series

Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH sets a strong foundation, in terms of distribution theory, for the linear model (regression and ANOVA), univariate time series analysis (ARMAX and GARCH), and some multivariate models associated primarily with modeling financial asset returns (copula-based structures and the discrete mixed normal and Laplace). It builds on the author's previous book, Fundamental Statistical Inference: A Computational Approach, which introduced the major concepts of statistical inference. Attention is explicitly paid to application and numeric computation, with examples of Matlab code throughout. The code offers a framework for discussion and illustration of numerics, and shows the mapping from theory to computation.

The topic of time series analysis is on firm footing, with numerous textbooks and research journals dedicated to it. With respect to the subject/technology, many chapters in Linear Models and Time-Series Analysis cover firmly entrenched topics (regression and ARMA). Several others are dedicated to very modern methods, as used in empirical finance, asset pricing, risk management, and portfolio optimization, in order to address the severe change in performance of many pension funds, and changes in how fund managers work.

Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH is suitable for advanced masters students in statistics and quantitative finance, as well as doctoral students in economics and finance. It is also useful for quantitative financial practitioners in large financial institutions and smaller finance outlets.

More books from Wiley

Cover of the book How to Survive a Medical Malpractice Lawsuit by Marc S. Paolella
Cover of the book Semi-Organic Growth by Marc S. Paolella
Cover of the book Theology and Religion by Marc S. Paolella
Cover of the book Project Management ToolBox by Marc S. Paolella
Cover of the book Chemistry of the Carbonyl Group by Marc S. Paolella
Cover of the book Professional ASP.NET Design Patterns by Marc S. Paolella
Cover of the book Senseless Panic by Marc S. Paolella
Cover of the book Smart Grid by Marc S. Paolella
Cover of the book Look at More by Marc S. Paolella
Cover of the book Accounting for Derivatives by Marc S. Paolella
Cover of the book Working Memory and Academic Learning by Marc S. Paolella
Cover of the book Key Performance Indicators by Marc S. Paolella
Cover of the book Soils as a Key Component of the Critical Zone 5 by Marc S. Paolella
Cover of the book Video Tracking by Marc S. Paolella
Cover of the book Articulations of Capital by Marc S. Paolella
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy