Machine Learning in Bio-Signal Analysis and Diagnostic Imaging

Nonfiction, Science & Nature, Science, Biological Sciences, Biotechnology, Technology, Engineering, Health & Well Being, Medical
Cover of the book Machine Learning in Bio-Signal Analysis and Diagnostic Imaging by , Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780128160879
Publisher: Elsevier Science Publication: November 30, 2018
Imprint: Academic Press Language: English
Author:
ISBN: 9780128160879
Publisher: Elsevier Science
Publication: November 30, 2018
Imprint: Academic Press
Language: English

Machine Learning in Bio-Signal Analysis and Diagnostic Imaging presents original research on the advanced analysis and classification techniques of biomedical signals and images that cover both supervised and unsupervised machine learning models, standards, algorithms, and their applications, along with the difficulties and challenges faced by healthcare professionals in analyzing biomedical signals and diagnostic images. These intelligent recommender systems are designed based on machine learning, soft computing, computer vision, artificial intelligence and data mining techniques. Classification and clustering techniques, such as PCA, SVM, techniques, Naive Bayes, Neural Network, Decision trees, and Association Rule Mining are among the approaches presented.

The design of high accuracy decision support systems assists and eases the job of healthcare practitioners and suits a variety of applications. Integrating Machine Learning (ML) technology with human visual psychometrics helps to meet the demands of radiologists in improving the efficiency and quality of diagnosis in dealing with unique and complex diseases in real time by reducing human errors and allowing fast and rigorous analysis. The book's target audience includes professors and students in biomedical engineering and medical schools, researchers and engineers.

  • Examines a variety of machine learning techniques applied to bio-signal analysis and diagnostic imaging
  • Discusses various methods of using intelligent systems based on machine learning, soft computing, computer vision, artificial intelligence and data mining
  • Covers the most recent research on machine learning in imaging analysis and includes applications to a number of domains
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Machine Learning in Bio-Signal Analysis and Diagnostic Imaging presents original research on the advanced analysis and classification techniques of biomedical signals and images that cover both supervised and unsupervised machine learning models, standards, algorithms, and their applications, along with the difficulties and challenges faced by healthcare professionals in analyzing biomedical signals and diagnostic images. These intelligent recommender systems are designed based on machine learning, soft computing, computer vision, artificial intelligence and data mining techniques. Classification and clustering techniques, such as PCA, SVM, techniques, Naive Bayes, Neural Network, Decision trees, and Association Rule Mining are among the approaches presented.

The design of high accuracy decision support systems assists and eases the job of healthcare practitioners and suits a variety of applications. Integrating Machine Learning (ML) technology with human visual psychometrics helps to meet the demands of radiologists in improving the efficiency and quality of diagnosis in dealing with unique and complex diseases in real time by reducing human errors and allowing fast and rigorous analysis. The book's target audience includes professors and students in biomedical engineering and medical schools, researchers and engineers.

More books from Elsevier Science

Cover of the book Environmentally Benign Approaches for Pulp Bleaching by
Cover of the book Plant Biotechnology and Agriculture by
Cover of the book DSP Integrated Circuits by
Cover of the book Poultry Quality Evaluation by
Cover of the book Handbook of Pollution Prevention and Cleaner Production Vol. 3: Best Practices in the Agrochemical Industry by
Cover of the book International Review of Cell and Molecular Biology by
Cover of the book Validamycin and Its Derivatives by
Cover of the book Cell Culture by
Cover of the book G Protein-Coupled Receptors in Immune Response and Regulation by
Cover of the book Magnetic, Ferroelectric, and Multiferroic Metal Oxides by
Cover of the book Metabolic Engineering by
Cover of the book Assessment of Vulnerability to Natural Hazards by
Cover of the book 5G Physical Layer by
Cover of the book Infrared and Raman Spectroscopy by
Cover of the book Annual Reports in Computational Chemistry by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy