Author: | Denny D. Tang, Yuan-Jen Lee | ISBN: | 9780511849923 |
Publisher: | Cambridge University Press | Publication: | April 22, 2010 |
Imprint: | Cambridge University Press | Language: | English |
Author: | Denny D. Tang, Yuan-Jen Lee |
ISBN: | 9780511849923 |
Publisher: | Cambridge University Press |
Publication: | April 22, 2010 |
Imprint: | Cambridge University Press |
Language: | English |
If you are a semiconductor engineer or a magnetics physicist developing magnetic memory, get the information you need with this, the first book on magnetic memory. From magnetics to the engineering design of memory, this practical book explains key magnetic properties and how they are related to memory performance, characterization methods of magnetic films, and tunneling magnetoresistance effect devices. It also covers memory cell options, array architecture, circuit models, and read-write engineering issues. You'll understand the soft fail nature of magnetic memory, which is very different from that of semiconductor memory, as well as methods to deal with the issue. You'll also get invaluable problem-solving insights from real-world memory case studies. This is an essential book for semiconductor engineers who need to understand magnetics, and for magnetics physicists who work with MRAM. It is also a valuable reference for graduate students working in electronic/magnetic device research.
If you are a semiconductor engineer or a magnetics physicist developing magnetic memory, get the information you need with this, the first book on magnetic memory. From magnetics to the engineering design of memory, this practical book explains key magnetic properties and how they are related to memory performance, characterization methods of magnetic films, and tunneling magnetoresistance effect devices. It also covers memory cell options, array architecture, circuit models, and read-write engineering issues. You'll understand the soft fail nature of magnetic memory, which is very different from that of semiconductor memory, as well as methods to deal with the issue. You'll also get invaluable problem-solving insights from real-world memory case studies. This is an essential book for semiconductor engineers who need to understand magnetics, and for magnetics physicists who work with MRAM. It is also a valuable reference for graduate students working in electronic/magnetic device research.