Materials & Process Integration for MEMS

Nonfiction, Science & Nature, Technology, Material Science, Science, Physics, Mechanics
Cover of the book Materials & Process Integration for MEMS by , Springer US
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781475757910
Publisher: Springer US Publication: June 29, 2013
Imprint: Springer Language: English
Author:
ISBN: 9781475757910
Publisher: Springer US
Publication: June 29, 2013
Imprint: Springer
Language: English

The field of materials and process integration for MEMS research has an extensive past as well as a long and promising future. Researchers, academicians and engineers from around the world are increasingly devoting their efforts on the materials and process integration issues and opportunities in MEMS devices. These efforts are crucial to sustain the long-term growth of the MEMS field. The commercial MEMS community is heavily driven by the push for profitable and sustainable products. In the course of establishing high­ volume and low-cost production processes, the critical importance of materials properties, behaviors, reliability, reproducibility, and predictability, as well as process integration of compatible materials systems become apparent. Although standard IC fabrication steps, particularly lithographic techniques, are leveraged heavily in the creation of MEMS devices, additional customized and novel micromachining techniques are needed to develop sophisticated MEMS structures. One of the most common techniques is bulk micromachining, by which micromechanical structures are created by etching into the bulk of the substrates with either anisotropic etching with strong alk:ali solution or deep reactive-ion etching (DRIB). The second common technique is surface micromachining, by which planar microstructures are created by sequential deposition and etching of thin films on the surface of the substrate, followed by a fmal removal of sacrificial layers to release suspended structures. Other techniques include deep lithography and plating to create metal structures with high aspect ratios (LIGA), micro electrodischarge machining (J.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The field of materials and process integration for MEMS research has an extensive past as well as a long and promising future. Researchers, academicians and engineers from around the world are increasingly devoting their efforts on the materials and process integration issues and opportunities in MEMS devices. These efforts are crucial to sustain the long-term growth of the MEMS field. The commercial MEMS community is heavily driven by the push for profitable and sustainable products. In the course of establishing high­ volume and low-cost production processes, the critical importance of materials properties, behaviors, reliability, reproducibility, and predictability, as well as process integration of compatible materials systems become apparent. Although standard IC fabrication steps, particularly lithographic techniques, are leveraged heavily in the creation of MEMS devices, additional customized and novel micromachining techniques are needed to develop sophisticated MEMS structures. One of the most common techniques is bulk micromachining, by which micromechanical structures are created by etching into the bulk of the substrates with either anisotropic etching with strong alk:ali solution or deep reactive-ion etching (DRIB). The second common technique is surface micromachining, by which planar microstructures are created by sequential deposition and etching of thin films on the surface of the substrate, followed by a fmal removal of sacrificial layers to release suspended structures. Other techniques include deep lithography and plating to create metal structures with high aspect ratios (LIGA), micro electrodischarge machining (J.

More books from Springer US

Cover of the book Basic Functions of Language, Reading and Reading Disability by
Cover of the book Modernization of Traditional Food Processes and Products by
Cover of the book Dynamic Routing in Broadband Networks by
Cover of the book Adenosine, Cardioprotection and Its Clinical Application by
Cover of the book Vacuum Microbalance Techniques by
Cover of the book Risk/Benefit Analysis for the Use and Approval of Thrombolytic, Antiarrhythmic, and Hypolipidemic Agents by
Cover of the book Depression in Latinos by
Cover of the book Grant Budgeting and Finance by
Cover of the book Imagery and Visual Expression in Therapy by
Cover of the book Super-Intelligent Machines by
Cover of the book Conscious and Unconscious Programs in the Brain by
Cover of the book Infantile Spasms by
Cover of the book Diagnosis and Treatment of Genitourinary Malignancies by
Cover of the book Superconducting Electron-Optic Devices by
Cover of the book Clinical Neuropsychology of Intervention by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy