Mathematical Methods for Cancer Evolution

Nonfiction, Science & Nature, Mathematics, Differential Equations, Applied, Science
Cover of the book Mathematical Methods for Cancer Evolution by Takashi Suzuki, Springer Singapore
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Takashi Suzuki ISBN: 9789811036712
Publisher: Springer Singapore Publication: June 13, 2017
Imprint: Springer Language: English
Author: Takashi Suzuki
ISBN: 9789811036712
Publisher: Springer Singapore
Publication: June 13, 2017
Imprint: Springer
Language: English

The purpose of this monograph is to describe recent developments in mathematical modeling and mathematical analysis of certain problems arising from cell biology. Cancer cells and their growth via several stages are of particular interest. To describe these events, multi-scale models are applied, involving continuously distributed environment variables and several components related to particles. Hybrid simulations are also carried out, using discretization of environment variables and the Monte Carlo method for the principal particle variables. Rigorous mathematical foundations are the bases of these tools.

The monograph is composed of four chapters. The first three chapters are concerned with modeling, while the last one is devoted to mathematical analysis. The first chapter deals with molecular dynamics occurring at the early stage of cancer invasion. A pathway network model based on a biological scenario is constructed, and then its mathematical structures are determined. In the second chapter mathematical modeling is introduced, overviewing several biological insights, using partial differential equations. Transport and gradient are the main factors, and several models are introduced including the Keller‒Segel systems. The third chapter treats the method of averaging to model the movement of particles, based on mean field theories, employing deterministic and stochastic approaches. Then appropriate parameters for stochastic simulations are examined. The segment model is finally proposed as an application. In the fourth chapter, thermodynamic features of these models and how these structures are applied in mathematical analysis are examined, that is, negative chemotaxis, parabolic systems with non-local term accounting for chemical reactions, mass-conservative reaction-diffusion systems, and competitive systems of chemotaxis. The monograph concludes with the method of the weak scaling limit applied to the Smoluchowski‒Poisson equation.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The purpose of this monograph is to describe recent developments in mathematical modeling and mathematical analysis of certain problems arising from cell biology. Cancer cells and their growth via several stages are of particular interest. To describe these events, multi-scale models are applied, involving continuously distributed environment variables and several components related to particles. Hybrid simulations are also carried out, using discretization of environment variables and the Monte Carlo method for the principal particle variables. Rigorous mathematical foundations are the bases of these tools.

The monograph is composed of four chapters. The first three chapters are concerned with modeling, while the last one is devoted to mathematical analysis. The first chapter deals with molecular dynamics occurring at the early stage of cancer invasion. A pathway network model based on a biological scenario is constructed, and then its mathematical structures are determined. In the second chapter mathematical modeling is introduced, overviewing several biological insights, using partial differential equations. Transport and gradient are the main factors, and several models are introduced including the Keller‒Segel systems. The third chapter treats the method of averaging to model the movement of particles, based on mean field theories, employing deterministic and stochastic approaches. Then appropriate parameters for stochastic simulations are examined. The segment model is finally proposed as an application. In the fourth chapter, thermodynamic features of these models and how these structures are applied in mathematical analysis are examined, that is, negative chemotaxis, parabolic systems with non-local term accounting for chemical reactions, mass-conservative reaction-diffusion systems, and competitive systems of chemotaxis. The monograph concludes with the method of the weak scaling limit applied to the Smoluchowski‒Poisson equation.

More books from Springer Singapore

Cover of the book Green Composites by Takashi Suzuki
Cover of the book China Satellite Navigation Conference (CSNC) 2019 Proceedings by Takashi Suzuki
Cover of the book Advances in Smart Grid and Renewable Energy by Takashi Suzuki
Cover of the book Quality of Teacher Education and Learning by Takashi Suzuki
Cover of the book Bio-inspired Computing: Theories and Applications by Takashi Suzuki
Cover of the book On Characters of Finite Groups by Takashi Suzuki
Cover of the book ULF Waves’ Interaction with Cold and Thermal Particles in the Inner Magnetosphere by Takashi Suzuki
Cover of the book Understanding the Impact of INSET on Teacher Change in China by Takashi Suzuki
Cover of the book Workforce Development by Takashi Suzuki
Cover of the book Neural Networks for Cooperative Control of Multiple Robot Arms by Takashi Suzuki
Cover of the book Competition, Innovation, and Growth in Japan by Takashi Suzuki
Cover of the book Exploring Sustainable Land Use in Monsoon Asia by Takashi Suzuki
Cover of the book Unlikely Partners? by Takashi Suzuki
Cover of the book Chinese International Students’ Stressors and Coping Strategies in the United States by Takashi Suzuki
Cover of the book Impact of Climate Change on Hydro-Energy Potential by Takashi Suzuki
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy