Matrix-Analytic Methods in Stochastic Models

Nonfiction, Science & Nature, Mathematics, Number Systems, Statistics
Cover of the book Matrix-Analytic Methods in Stochastic Models by , Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781461449096
Publisher: Springer New York Publication: December 4, 2012
Imprint: Springer Language: English
Author:
ISBN: 9781461449096
Publisher: Springer New York
Publication: December 4, 2012
Imprint: Springer
Language: English

Matrix-analytic and related methods have become recognized as an important and fundamental approach for the mathematical analysis of general classes of complex stochastic models. Research in the area of matrix-analytic and related methods seeks to discover underlying probabilistic structures intrinsic in such stochastic models, develop numerical algorithms for computing functionals (e.g., performance measures) of the underlying stochastic processes, and apply these probabilistic structures and/or computational algorithms within a wide variety of fields. This volume presents recent research results on: the theory, algorithms and methodologies concerning matrix-analytic and related methods in stochastic models; and the application of matrix-analytic and related methods in various fields, which includes but is not limited to computer science and engineering, communication networks and telephony, electrical and industrial engineering, operations research, management science, financial and risk analysis, and bio-statistics. These research studies provide deep insights and understanding of the stochastic models of interest from a mathematics and/or applications perspective, as well as identify directions for future research.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Matrix-analytic and related methods have become recognized as an important and fundamental approach for the mathematical analysis of general classes of complex stochastic models. Research in the area of matrix-analytic and related methods seeks to discover underlying probabilistic structures intrinsic in such stochastic models, develop numerical algorithms for computing functionals (e.g., performance measures) of the underlying stochastic processes, and apply these probabilistic structures and/or computational algorithms within a wide variety of fields. This volume presents recent research results on: the theory, algorithms and methodologies concerning matrix-analytic and related methods in stochastic models; and the application of matrix-analytic and related methods in various fields, which includes but is not limited to computer science and engineering, communication networks and telephony, electrical and industrial engineering, operations research, management science, financial and risk analysis, and bio-statistics. These research studies provide deep insights and understanding of the stochastic models of interest from a mathematics and/or applications perspective, as well as identify directions for future research.

More books from Springer New York

Cover of the book Contract Research and Development Organizations by
Cover of the book Radiation Oncology Study Guide by
Cover of the book Lie Groups: Structure, Actions, and Representations by
Cover of the book Crossroads between Innate and Adaptive Immunity II by
Cover of the book ICT Development for Social and Rural Connectedness by
Cover of the book The Strength of Self-Acceptance by
Cover of the book Rational Kinematics by
Cover of the book Handbook of Mindfulness in Education by
Cover of the book Design and Testing of Digital Microfluidic Biochips by
Cover of the book The Craft of Scientific Writing by
Cover of the book Mobile Web Browsing Using the Cloud by
Cover of the book Psychiatric Diagnosis by
Cover of the book Infant Depression by
Cover of the book Residue Reviews by
Cover of the book A Survey of Data Leakage Detection and Prevention Solutions by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy