MDMA-induced serotonergic neurotoxicity

Nonfiction, Health & Well Being, Psychology, Physiological Psychology
Cover of the book MDMA-induced serotonergic neurotoxicity by Dominik Buchmüller, GRIN Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Dominik Buchmüller ISBN: 9783640439676
Publisher: GRIN Publishing Publication: October 6, 2009
Imprint: GRIN Publishing Language: English
Author: Dominik Buchmüller
ISBN: 9783640439676
Publisher: GRIN Publishing
Publication: October 6, 2009
Imprint: GRIN Publishing
Language: English

Seminar paper from the year 2009 in the subject Psychology - Biological Psychology, grade: A (100%), New College Durham (Duke University, Department of Psychology and Neuroscience), course: Behavior and Neurochemistry, language: English, abstract: It is the aim of this paper to review and integrate relevant empirical findings and theoretical discussions concerning the molecular and cellular mechanisms and effects of MDMA-induced 5-HT neurotoxicity in laboratory animals. 3,4-methylenedioxymethamphetamine (MDMA) is a derivative of the synthetic psychostimulant methamphetamine (METH). It also shares some structural and pharmacological properties of mescaline, a naturally occurring psychedelic hallucinogen. At the molecular level, all three substances resemble the monoamine neurotransmitters epinephrine (E) and dopamine (DA). They mimic the neurophysiological actions and effects of E and DA, as well as serotonin (5-HT). METH and MDMA do so by binding to, and reversal of monoamine-specific transporter proteins at the presynaptic plasma membrane. While the psychological effects of METH are mainly due its action as a DA release agent and reuptake inhibitor, MDMA primarily affects the serotonergic system. It has a high affinity for the serotonin-specific transporter (SERT), which carries it into the presynaptic neuron. Inside the cell, MDMA inhibits the vesicular monoamine transporter type 2 (VMAT2), pre-venting intracellular 5-HT from being stored in synaptic vesicles. In addition, MDMA phos-phorylates SERT, which causes a reversal of its reuptake function and, hence, non-exocytotic efflux of 5-HT by the means of passive diffusion. Because neurotransmitter release normally only occurs in case of an action potential, and the released transmitter is partly reabsorbed and recycled, the reverse functioning of SERT depletes 5-HT stores. The equivalent effect of METH via reversal of the DA transporter (DAT) has been linked to its neurotoxic properties (Yamamoto & Zhu, 1998). As a derivative of methamphetamine, MDMA is sometimes believed to have inherited the severe dopaminergic neurotoxicity of METH and its parent compound amphetamine. Such neurotoxic potential has been found in mice but not in rats (Colado, O'Shea, and Green, 2004), and remains to be established for non-human primates. The probably most prominent publication claiming that MDMA caused irreversible damage to primate DA neurons (Ricaurte et al., 2002) was shown to be in error and had to be retracted. Instead of a recreational dose of MDMA (3 2 mg/kg), the monkeys had, in fact, been given METH, which, at such doses, is known to be neurotoxic in primates (Villemagne et al., 1998). [...]

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Seminar paper from the year 2009 in the subject Psychology - Biological Psychology, grade: A (100%), New College Durham (Duke University, Department of Psychology and Neuroscience), course: Behavior and Neurochemistry, language: English, abstract: It is the aim of this paper to review and integrate relevant empirical findings and theoretical discussions concerning the molecular and cellular mechanisms and effects of MDMA-induced 5-HT neurotoxicity in laboratory animals. 3,4-methylenedioxymethamphetamine (MDMA) is a derivative of the synthetic psychostimulant methamphetamine (METH). It also shares some structural and pharmacological properties of mescaline, a naturally occurring psychedelic hallucinogen. At the molecular level, all three substances resemble the monoamine neurotransmitters epinephrine (E) and dopamine (DA). They mimic the neurophysiological actions and effects of E and DA, as well as serotonin (5-HT). METH and MDMA do so by binding to, and reversal of monoamine-specific transporter proteins at the presynaptic plasma membrane. While the psychological effects of METH are mainly due its action as a DA release agent and reuptake inhibitor, MDMA primarily affects the serotonergic system. It has a high affinity for the serotonin-specific transporter (SERT), which carries it into the presynaptic neuron. Inside the cell, MDMA inhibits the vesicular monoamine transporter type 2 (VMAT2), pre-venting intracellular 5-HT from being stored in synaptic vesicles. In addition, MDMA phos-phorylates SERT, which causes a reversal of its reuptake function and, hence, non-exocytotic efflux of 5-HT by the means of passive diffusion. Because neurotransmitter release normally only occurs in case of an action potential, and the released transmitter is partly reabsorbed and recycled, the reverse functioning of SERT depletes 5-HT stores. The equivalent effect of METH via reversal of the DA transporter (DAT) has been linked to its neurotoxic properties (Yamamoto & Zhu, 1998). As a derivative of methamphetamine, MDMA is sometimes believed to have inherited the severe dopaminergic neurotoxicity of METH and its parent compound amphetamine. Such neurotoxic potential has been found in mice but not in rats (Colado, O'Shea, and Green, 2004), and remains to be established for non-human primates. The probably most prominent publication claiming that MDMA caused irreversible damage to primate DA neurons (Ricaurte et al., 2002) was shown to be in error and had to be retracted. Instead of a recreational dose of MDMA (3 2 mg/kg), the monkeys had, in fact, been given METH, which, at such doses, is known to be neurotoxic in primates (Villemagne et al., 1998). [...]

More books from GRIN Publishing

Cover of the book The portrayal of women in selected British newspapers by Dominik Buchmüller
Cover of the book Barriers and drivers for the deployment of renewable energy technology in developing countries by Dominik Buchmüller
Cover of the book Increasing the Citizens' EU Awareness by Dominik Buchmüller
Cover of the book The Ideal and the Reality of Classical Athens by Dominik Buchmüller
Cover of the book Elements of the Holy Grail Quest in David Lodge's 'Small World' by Dominik Buchmüller
Cover of the book Feuding and Southern Appalachia: Case Study Hatfield-McCoy Feud by Dominik Buchmüller
Cover of the book German immigrants in the Chicago area by Dominik Buchmüller
Cover of the book A Letter to the Women of England by Dominik Buchmüller
Cover of the book 'Why Can´t You and Your Brother Be More Like Other People?': Amanda´s Way of Dealing with Her Loneliness and Its Effects on Laura by Dominik Buchmüller
Cover of the book Putnam Two-level games by Dominik Buchmüller
Cover of the book Antitrust Implications of Technology Consortia by Dominik Buchmüller
Cover of the book Cyberpunk in 'The Matrix' by Dominik Buchmüller
Cover of the book John Lewis Partnership's leadership. A case study by Dominik Buchmüller
Cover of the book Innovation in Banking by Dominik Buchmüller
Cover of the book The role of the Copts in the national movement in Egypt until the 1919 revolution by Dominik Buchmüller
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy