Microphysics of Atmospheric Phenomena

Nonfiction, Science & Nature, Science, Earth Sciences, Geophysics, Other Sciences, Meteorology
Cover of the book Microphysics of Atmospheric Phenomena by Boris M. Smirnov, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Boris M. Smirnov ISBN: 9783319308135
Publisher: Springer International Publishing Publication: August 29, 2016
Imprint: Springer Language: English
Author: Boris M. Smirnov
ISBN: 9783319308135
Publisher: Springer International Publishing
Publication: August 29, 2016
Imprint: Springer
Language: English

This book investigates elementary processes in the Earth’s atmosphere involving photons, electrons, ions, radicals, and aerosols. It is based on global atmospheric models such as the standard atmospheric model with averaged atmospheric parameters across the globe and over time, the Earth’s energetic balance, and the global electric circuit that allows to analyze fundamental atmospheric properties to be analyzed. Rate constants of elementary processes in the Earth’s atmosphere, together with measured atmospheric parameters and existing concepts of atmospheric phenomena, are used in the analysis of global and local atmospheric processes. Atmospheric photoprocesses result from the interaction of solar radiation with the atmosphere and processes involving ions, oxygen atoms, excited atomic particles and ozone molecules. Atmospheric electricity as a secondary phenomenon to atmospheric water circulation results in a chain of processes that begins with collisions of water aerosols in different aggregate states. Cosmic rays are of importance for atmospheric electricity, as they create positive and negative ions in the air. Air breakdown in an electric field of clouds in the form of lightning may develop under the influence of cosmic ray-created seed electrons, which are necessary for electron multiplication in ionization wave-streamers. The upper atmosphere (ionosphere) is formed under solar radiation in a vacuum ultraviolet spectrum, and absorption of this radiation leads to air photoionization. The greenhouse effect is determined by atmospheric water, whereas transitions between a water vapor and aerosols may lead to a change in atmospheric optical depth. Carbon dioxide contributes in small portions to the atmospheric greenhouse effect. Cosmic rays are of importance for atmospheric discharge, the origin of lightning and cloud formation in the first stage of aerosol growth. This book provides a qualitative description of atmospheric properties and phenomena based on elementary processes and simple models.  

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book investigates elementary processes in the Earth’s atmosphere involving photons, electrons, ions, radicals, and aerosols. It is based on global atmospheric models such as the standard atmospheric model with averaged atmospheric parameters across the globe and over time, the Earth’s energetic balance, and the global electric circuit that allows to analyze fundamental atmospheric properties to be analyzed. Rate constants of elementary processes in the Earth’s atmosphere, together with measured atmospheric parameters and existing concepts of atmospheric phenomena, are used in the analysis of global and local atmospheric processes. Atmospheric photoprocesses result from the interaction of solar radiation with the atmosphere and processes involving ions, oxygen atoms, excited atomic particles and ozone molecules. Atmospheric electricity as a secondary phenomenon to atmospheric water circulation results in a chain of processes that begins with collisions of water aerosols in different aggregate states. Cosmic rays are of importance for atmospheric electricity, as they create positive and negative ions in the air. Air breakdown in an electric field of clouds in the form of lightning may develop under the influence of cosmic ray-created seed electrons, which are necessary for electron multiplication in ionization wave-streamers. The upper atmosphere (ionosphere) is formed under solar radiation in a vacuum ultraviolet spectrum, and absorption of this radiation leads to air photoionization. The greenhouse effect is determined by atmospheric water, whereas transitions between a water vapor and aerosols may lead to a change in atmospheric optical depth. Carbon dioxide contributes in small portions to the atmospheric greenhouse effect. Cosmic rays are of importance for atmospheric discharge, the origin of lightning and cloud formation in the first stage of aerosol growth. This book provides a qualitative description of atmospheric properties and phenomena based on elementary processes and simple models.  

More books from Springer International Publishing

Cover of the book Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data by Boris M. Smirnov
Cover of the book Strangeness and Charge Symmetry Violation in Nucleon Structure by Boris M. Smirnov
Cover of the book Dense Image Correspondences for Computer Vision by Boris M. Smirnov
Cover of the book PET Scan in Hodgkin Lymphoma by Boris M. Smirnov
Cover of the book Pierre Bourdieu in Hispanic Literature and Culture by Boris M. Smirnov
Cover of the book Jurisprudence and Theology by Boris M. Smirnov
Cover of the book Finite Difference Methods,Theory and Applications by Boris M. Smirnov
Cover of the book Theory, Research, and Practical Guidelines for Family Life Coaching by Boris M. Smirnov
Cover of the book Fundamentals of Service Systems by Boris M. Smirnov
Cover of the book The Economics of Public Health by Boris M. Smirnov
Cover of the book The Infrastructure We Ride On by Boris M. Smirnov
Cover of the book The AIDS Pandemic by Boris M. Smirnov
Cover of the book Temperature- and Supply Voltage-Independent Time References for Wireless Sensor Networks by Boris M. Smirnov
Cover of the book Bacterial Diversity in Sustainable Agriculture by Boris M. Smirnov
Cover of the book Reoperative Parathyroid Surgery by Boris M. Smirnov
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy