Mixed-Effects Regression Models in Linguistics

Nonfiction, Social & Cultural Studies, Social Science, Statistics, Reference & Language, Language Arts, Linguistics
Cover of the book Mixed-Effects Regression Models in Linguistics by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319698304
Publisher: Springer International Publishing Publication: February 7, 2018
Imprint: Springer Language: English
Author:
ISBN: 9783319698304
Publisher: Springer International Publishing
Publication: February 7, 2018
Imprint: Springer
Language: English

When data consist of grouped observations or clusters, and there is a risk that measurements within the same group are not independent, group-specific random effects can be added to a regression model in order to account for such within-group associations. Regression models that contain such group-specific random effects are called mixed-effects regression models, or simply mixed models. Mixed models are a versatile tool that can handle both balanced and unbalanced datasets and that can also be applied when several layers of grouping are present in the data; these layers can either be nested or crossed. 

In linguistics, as in many other fields, the use of mixed models has gained ground rapidly over the last decade. This methodological evolution enables us to build more sophisticated and arguably more realistic models, but, due to its technical complexity, also introduces new challenges. This volume brings together a number of promising new evolutions in the use of mixed models in linguistics, but also addresses a number of common complications, misunderstandings, and pitfalls. Topics that are covered include the use of huge datasets, dealing with non-linear relations, issues of cross-validation, and issues of model selection and complex random structures. The volume features examples from various subfields in linguistics. The book also provides R code for a wide range of analyses.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

When data consist of grouped observations or clusters, and there is a risk that measurements within the same group are not independent, group-specific random effects can be added to a regression model in order to account for such within-group associations. Regression models that contain such group-specific random effects are called mixed-effects regression models, or simply mixed models. Mixed models are a versatile tool that can handle both balanced and unbalanced datasets and that can also be applied when several layers of grouping are present in the data; these layers can either be nested or crossed. 

In linguistics, as in many other fields, the use of mixed models has gained ground rapidly over the last decade. This methodological evolution enables us to build more sophisticated and arguably more realistic models, but, due to its technical complexity, also introduces new challenges. This volume brings together a number of promising new evolutions in the use of mixed models in linguistics, but also addresses a number of common complications, misunderstandings, and pitfalls. Topics that are covered include the use of huge datasets, dealing with non-linear relations, issues of cross-validation, and issues of model selection and complex random structures. The volume features examples from various subfields in linguistics. The book also provides R code for a wide range of analyses.

More books from Springer International Publishing

Cover of the book Cloud Computing and Security by
Cover of the book Classical and Quantum Cosmology by
Cover of the book Modification of Magnetic Properties of Iron Clusters by Doping and Adsorption by
Cover of the book Leadership through Trust by
Cover of the book Software Quality: The Complexity and Challenges of Software Engineering and Software Quality in the Cloud by
Cover of the book Optoelectronic Circuits in Nanometer CMOS Technology by
Cover of the book Concise Dictionary of Engineering by
Cover of the book Internet and Distributed Computing Systems by
Cover of the book Fashion, Dress and Identity in South Asian Diaspora Narratives by
Cover of the book Computer Information Systems and Industrial Management by
Cover of the book Discrete Stochastic Processes and Applications by
Cover of the book Research in History and Philosophy of Mathematics by
Cover of the book The Palgrave International Handbook of Women and Outdoor Learning by
Cover of the book Planetary Vistas by
Cover of the book Chemical Optimization Algorithm for Fuzzy Controller Design by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy