Model-Free Prediction and Regression

A Transformation-Based Approach to Inference

Nonfiction, Science & Nature, Mathematics, Statistics, Computers, Application Software
Cover of the book Model-Free Prediction and Regression by Dimitris N. Politis, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Dimitris N. Politis ISBN: 9783319213477
Publisher: Springer International Publishing Publication: November 13, 2015
Imprint: Springer Language: English
Author: Dimitris N. Politis
ISBN: 9783319213477
Publisher: Springer International Publishing
Publication: November 13, 2015
Imprint: Springer
Language: English

The Model-Free Prediction Principle expounded upon in this monograph is based on the simple notion of transforming a complex dataset to one that is easier to work with, e.g., i.i.d. or Gaussian. As such, it restores the emphasis on observable quantities, i.e., current and future data, as opposed to unobservable model parameters and estimates thereof, and yields optimal predictors in diverse settings such as regression and time series. Furthermore, the Model-Free Bootstrap takes us beyond point prediction in order to construct frequentist prediction intervals without resort to unrealistic assumptions such as normality.

Prediction has been traditionally approached via a model-based paradigm, i.e., (a) fit a model to the data at hand, and (b) use the fitted model to extrapolate/predict future data. Due to both mathematical and computational constraints, 20th century statistical practice focused mostly on parametric models. Fortunately, with the advent of widely accessible powerful computing in the late 1970s, computer-intensive methods such as the bootstrap and cross-validation freed practitioners from the limitations of parametric models, and paved the way towards the `big data' era of the 21st century. Nonetheless, there is a further step one may take, i.e., going beyond even nonparametric models; this is where the Model-Free Prediction Principle is useful.

Interestingly, being able to predict a response variable Y associated with a regressor variable X taking on any possible value seems to inadvertently also achieve the main goal of modeling, i.e., trying to describe how Y depends on X. Hence, as prediction can be treated as a by-product of model-fitting, key estimation problems can be addressed as a by-product of being able to perform prediction. In other words, a practitioner can use Model-Free Prediction ideas in order to additionally obtain point estimates and confidence intervals for relevant parameters leading to an alternative, transformation-based approach to statistical inference.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The Model-Free Prediction Principle expounded upon in this monograph is based on the simple notion of transforming a complex dataset to one that is easier to work with, e.g., i.i.d. or Gaussian. As such, it restores the emphasis on observable quantities, i.e., current and future data, as opposed to unobservable model parameters and estimates thereof, and yields optimal predictors in diverse settings such as regression and time series. Furthermore, the Model-Free Bootstrap takes us beyond point prediction in order to construct frequentist prediction intervals without resort to unrealistic assumptions such as normality.

Prediction has been traditionally approached via a model-based paradigm, i.e., (a) fit a model to the data at hand, and (b) use the fitted model to extrapolate/predict future data. Due to both mathematical and computational constraints, 20th century statistical practice focused mostly on parametric models. Fortunately, with the advent of widely accessible powerful computing in the late 1970s, computer-intensive methods such as the bootstrap and cross-validation freed practitioners from the limitations of parametric models, and paved the way towards the `big data' era of the 21st century. Nonetheless, there is a further step one may take, i.e., going beyond even nonparametric models; this is where the Model-Free Prediction Principle is useful.

Interestingly, being able to predict a response variable Y associated with a regressor variable X taking on any possible value seems to inadvertently also achieve the main goal of modeling, i.e., trying to describe how Y depends on X. Hence, as prediction can be treated as a by-product of model-fitting, key estimation problems can be addressed as a by-product of being able to perform prediction. In other words, a practitioner can use Model-Free Prediction ideas in order to additionally obtain point estimates and confidence intervals for relevant parameters leading to an alternative, transformation-based approach to statistical inference.

More books from Springer International Publishing

Cover of the book Synergetics and Fractals in Tribology by Dimitris N. Politis
Cover of the book The Church of England - Charity Law and Human Rights by Dimitris N. Politis
Cover of the book Religious Rules, State Law, and Normative Pluralism - A Comparative Overview by Dimitris N. Politis
Cover of the book The Chemical Bond II by Dimitris N. Politis
Cover of the book Blockchain – ICBC 2018 by Dimitris N. Politis
Cover of the book Learning and Collaboration Technologies. Technology in Education by Dimitris N. Politis
Cover of the book Reviews of Environmental Contamination and Toxicology Volume 240 by Dimitris N. Politis
Cover of the book 1D Oxide Nanostructures Obtained by Sol-Gel and Hydrothermal Methods by Dimitris N. Politis
Cover of the book Modeling Decisions for Artificial Intelligence by Dimitris N. Politis
Cover of the book Bisphenol A Removal from Water and Wastewater by Dimitris N. Politis
Cover of the book Handbook of Grammatical Evolution by Dimitris N. Politis
Cover of the book Engineering Mineralized and Load Bearing Tissues by Dimitris N. Politis
Cover of the book Teacher Education for the Changing Demographics of Schooling by Dimitris N. Politis
Cover of the book CNS Infections by Dimitris N. Politis
Cover of the book Human Paleoneurology by Dimitris N. Politis
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy