Multiparametric Statistics

Nonfiction, Computers, Advanced Computing, Theory, Science & Nature, Mathematics, Statistics
Cover of the book Multiparametric Statistics by Vadim Ivanovich Serdobolskii, Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Vadim Ivanovich Serdobolskii ISBN: 9780080555928
Publisher: Elsevier Science Publication: October 18, 2007
Imprint: Elsevier Science Language: English
Author: Vadim Ivanovich Serdobolskii
ISBN: 9780080555928
Publisher: Elsevier Science
Publication: October 18, 2007
Imprint: Elsevier Science
Language: English

This monograph presents mathematical theory of statistical models described by the essentially large number of unknown parameters, comparable with sample size but can also be much larger. In this meaning, the proposed theory can be called "essentially multiparametric". It is developed on the basis of the Kolmogorov asymptotic approach in which sample size increases along with the number of unknown parameters.

This theory opens a way for solution of central problems of multivariate statistics, which up until now have not been solved. Traditional statistical methods based on the idea of an infinite sampling often break down in the solution of real problems, and, dependent on data, can be inefficient, unstable and even not applicable. In this situation, practical statisticians are forced to use various heuristic methods in the hope the will find a satisfactory solution.

Mathematical theory developed in this book presents a regular technique for implementing new, more efficient versions of statistical procedures. Near exact solutions are constructed for a number of concrete multi-dimensional problems: estimation of expectation vectors, regression and discriminant analysis, and for the solution to large systems of empiric linear algebraic equations. It is remarkable that these solutions prove to be not only non-degenerating and always stable, but also near exact within a wide class of populations.

In the conventional situation of small dimension and large sample size these new solutions far surpass the classical, commonly used consistent ones. It can be expected in the near future, for the most part, traditional multivariate statistical software will be replaced by the always reliable and more efficient versions of statistical procedures implemented by the technology described in this book.

This monograph will be of interest to a variety of specialists working with the theory of statistical methods and its applications. Mathematicians would find new classes of urgent problems to be solved in their own regions. Specialists in applied statistics creating statistical packages will be interested in more efficient methods proposed in the book. Advantages of these methods are obvious: the user is liberated from the permanent uncertainty of possible instability and inefficiency and gets algorithms with unimprovable accuracy and guaranteed for a wide class of distributions.

A large community of specialists applying statistical methods to real data will find a number of always stable highly accurate versions of algorithms that will help them to better solve their scientific or economic problems. Students and postgraduates will be interested in this book as it will help them get at the foremost frontier of modern statistical science.

- Presents original mathematical investigations
and open a new branch of mathematical statistics
- Illustrates a technique for developing always stable and efficient versions of multivariate statistical analysis for large-dimensional problems
- Describes the most popular methods some near exact solutions; including algorithms of non-degenerating large-dimensional discriminant and regression analysis

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This monograph presents mathematical theory of statistical models described by the essentially large number of unknown parameters, comparable with sample size but can also be much larger. In this meaning, the proposed theory can be called "essentially multiparametric". It is developed on the basis of the Kolmogorov asymptotic approach in which sample size increases along with the number of unknown parameters.

This theory opens a way for solution of central problems of multivariate statistics, which up until now have not been solved. Traditional statistical methods based on the idea of an infinite sampling often break down in the solution of real problems, and, dependent on data, can be inefficient, unstable and even not applicable. In this situation, practical statisticians are forced to use various heuristic methods in the hope the will find a satisfactory solution.

Mathematical theory developed in this book presents a regular technique for implementing new, more efficient versions of statistical procedures. Near exact solutions are constructed for a number of concrete multi-dimensional problems: estimation of expectation vectors, regression and discriminant analysis, and for the solution to large systems of empiric linear algebraic equations. It is remarkable that these solutions prove to be not only non-degenerating and always stable, but also near exact within a wide class of populations.

In the conventional situation of small dimension and large sample size these new solutions far surpass the classical, commonly used consistent ones. It can be expected in the near future, for the most part, traditional multivariate statistical software will be replaced by the always reliable and more efficient versions of statistical procedures implemented by the technology described in this book.

This monograph will be of interest to a variety of specialists working with the theory of statistical methods and its applications. Mathematicians would find new classes of urgent problems to be solved in their own regions. Specialists in applied statistics creating statistical packages will be interested in more efficient methods proposed in the book. Advantages of these methods are obvious: the user is liberated from the permanent uncertainty of possible instability and inefficiency and gets algorithms with unimprovable accuracy and guaranteed for a wide class of distributions.

A large community of specialists applying statistical methods to real data will find a number of always stable highly accurate versions of algorithms that will help them to better solve their scientific or economic problems. Students and postgraduates will be interested in this book as it will help them get at the foremost frontier of modern statistical science.

- Presents original mathematical investigations
and open a new branch of mathematical statistics
- Illustrates a technique for developing always stable and efficient versions of multivariate statistical analysis for large-dimensional problems
- Describes the most popular methods some near exact solutions; including algorithms of non-degenerating large-dimensional discriminant and regression analysis

More books from Elsevier Science

Cover of the book Textiles for Protection by Vadim Ivanovich Serdobolskii
Cover of the book Advances in Virus Research by Vadim Ivanovich Serdobolskii
Cover of the book Novel Approaches to Improving High Temperature Corrosion Resistance by Vadim Ivanovich Serdobolskii
Cover of the book Antioxidants in Food by Vadim Ivanovich Serdobolskii
Cover of the book Introduction to Plasmas and Plasma Dynamics by Vadim Ivanovich Serdobolskii
Cover of the book Developments in Tissue Engineered and Regenerative Medicine Products by Vadim Ivanovich Serdobolskii
Cover of the book Quantitative EEG, Event-Related Potentials and Neurotherapy by Vadim Ivanovich Serdobolskii
Cover of the book Geochemistry of Earth Surface Systems by Vadim Ivanovich Serdobolskii
Cover of the book Combustion, Flames and Explosions of Gases by Vadim Ivanovich Serdobolskii
Cover of the book Essential Computational Modeling in Chemistry by Vadim Ivanovich Serdobolskii
Cover of the book International Money and Finance by Vadim Ivanovich Serdobolskii
Cover of the book Mediterranean Marine Mammal Ecology and Conservation by Vadim Ivanovich Serdobolskii
Cover of the book New Content in Digital Repositories by Vadim Ivanovich Serdobolskii
Cover of the book International Review of Cell and Molecular Biology by Vadim Ivanovich Serdobolskii
Cover of the book Skin and Arthropod Vectors by Vadim Ivanovich Serdobolskii
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy