Nanoscience and Nanotechnology: Signature Initiatives on Knowledge Infrastructure, Sensors, Nanoelectronics, Nanomanufacturing, Solar Energy Collection, Federal Research Strategy

Nonfiction, Science & Nature, Technology, Nanotechnology
Cover of the book Nanoscience and Nanotechnology: Signature Initiatives on Knowledge Infrastructure, Sensors, Nanoelectronics, Nanomanufacturing, Solar Energy Collection, Federal Research Strategy by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781301287338
Publisher: Progressive Management Publication: May 29, 2013
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781301287338
Publisher: Progressive Management
Publication: May 29, 2013
Imprint: Smashwords Edition
Language: English

America's ongoing research program into nanotechnology involves many areas of study, some of which have been designated as signature initiatives: knowledge infrastructure, sensors, nanoelectronics, nanomanufacturing, solar energy collection. Official reports from the National Nanotechnology Initiative provide vital information about these important research topics which could revolutionize our world.

Nanotechnology solves global challenges by generating and applying new multidisciplinary knowledge of nanoscale phenomena and engineered nanoscale materials, structures, and products. The data underlying this new knowledge are vast, disconnected, and challenging to integrate into the broad scientific body of knowledge. The Federal agencies participating in the National Nanotechnology Initiative (NNI)—in conjunction with the broader nanoscale science, engineering, and technology communities—have identified the building of a formal knowledge infrastructure as critical to sustainable progress in nanotechnology. Nanoinformatics is the science and practice of developing and implementing effective mechanisms for the nanotechnology community to collect, validate, store, share, mine, analyze, model, and apply nanotechnology information. Nanoinformatics is integrated throughout the entire nanotechnology landscape, impacting all aspects of research, development, and application. An improved nanoinformatics infrastructure will ensure the sustainability of our national nanotechnology proficiency by improving the reproducibility and distribution of experimental data as well as by promoting the development and validation of tools and models to transform data into information and applications.

Nanotechnology-enabled sensors (nanosensors) are providing new solutions in physical, chemical, and biological sensing that enable increased detection sensitivity, specificity, and multiplexing* capability in portable devices for a wide variety of health, safety, and environmental assessments.

The semiconductor industry is a major driver of the modern economy and has accounted for a large proportion of the productivity gains that have characterized the global economy since the 1990s. Continuing to shrink device dimensions is important in order to further increase processing speed, reduce device switching energy, increase system functionality, and reduce manufacturing cost per bit. But as the dimensions of critical elements of devices approach atomic size, quantum tunneling and other quantum effects degrade and ultimately prohibit conventional device operation. Researchers are therefore pursuing somewhat radical approaches to overcome these fundamental physics limitations. Candidate approaches include different types of logic using cellular automata or quantum entanglement and superposition; 3-D spatial architectures; and information-carrying variables other than electron charge such as photon polarization, electron spin, and position and states of atoms and molecules.

A decade of research under the National Nanotechnology Initiative has led to remarkable discoveries of nanoscale materials with unique properties, laboratory demonstrations of a range of innovative nanoscale devices, and introduction of a limited number of nanotechnology-based products.

Nanotechnology can help overcome current performance barriers and substantially improve the collection and conversion of solar energy. At the nanoscale, a number of physical phenomena have been identified that can improve the collection and conversion of solar energy. Nanoparticles and nanostructures have been shown to enhance the absorption of light, increase the conversion of light to electricity, and provide better thermal storage and transport.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

America's ongoing research program into nanotechnology involves many areas of study, some of which have been designated as signature initiatives: knowledge infrastructure, sensors, nanoelectronics, nanomanufacturing, solar energy collection. Official reports from the National Nanotechnology Initiative provide vital information about these important research topics which could revolutionize our world.

Nanotechnology solves global challenges by generating and applying new multidisciplinary knowledge of nanoscale phenomena and engineered nanoscale materials, structures, and products. The data underlying this new knowledge are vast, disconnected, and challenging to integrate into the broad scientific body of knowledge. The Federal agencies participating in the National Nanotechnology Initiative (NNI)—in conjunction with the broader nanoscale science, engineering, and technology communities—have identified the building of a formal knowledge infrastructure as critical to sustainable progress in nanotechnology. Nanoinformatics is the science and practice of developing and implementing effective mechanisms for the nanotechnology community to collect, validate, store, share, mine, analyze, model, and apply nanotechnology information. Nanoinformatics is integrated throughout the entire nanotechnology landscape, impacting all aspects of research, development, and application. An improved nanoinformatics infrastructure will ensure the sustainability of our national nanotechnology proficiency by improving the reproducibility and distribution of experimental data as well as by promoting the development and validation of tools and models to transform data into information and applications.

Nanotechnology-enabled sensors (nanosensors) are providing new solutions in physical, chemical, and biological sensing that enable increased detection sensitivity, specificity, and multiplexing* capability in portable devices for a wide variety of health, safety, and environmental assessments.

The semiconductor industry is a major driver of the modern economy and has accounted for a large proportion of the productivity gains that have characterized the global economy since the 1990s. Continuing to shrink device dimensions is important in order to further increase processing speed, reduce device switching energy, increase system functionality, and reduce manufacturing cost per bit. But as the dimensions of critical elements of devices approach atomic size, quantum tunneling and other quantum effects degrade and ultimately prohibit conventional device operation. Researchers are therefore pursuing somewhat radical approaches to overcome these fundamental physics limitations. Candidate approaches include different types of logic using cellular automata or quantum entanglement and superposition; 3-D spatial architectures; and information-carrying variables other than electron charge such as photon polarization, electron spin, and position and states of atoms and molecules.

A decade of research under the National Nanotechnology Initiative has led to remarkable discoveries of nanoscale materials with unique properties, laboratory demonstrations of a range of innovative nanoscale devices, and introduction of a limited number of nanotechnology-based products.

Nanotechnology can help overcome current performance barriers and substantially improve the collection and conversion of solar energy. At the nanoscale, a number of physical phenomena have been identified that can improve the collection and conversion of solar energy. Nanoparticles and nanostructures have been shown to enhance the absorption of light, increase the conversion of light to electricity, and provide better thermal storage and transport.

More books from Progressive Management

Cover of the book Cryptocurrency and State Sovereignty: Comprehensive Review of Bitcoin, Blockchain, and Virtual Currency Technology, Hash Functions, Merkle Trees, and Security, Government Bans and Regulations by Progressive Management
Cover of the book America's Space Shuttle: Main Propulsion System (SSME) NASA Astronaut Training Manual by Progressive Management
Cover of the book Regime Change and the Role of Airpower: South Vietnamese Regime Change in the Vietnam War, President Diem Coup, President Kennedy and Johnson, American Regime Change Causal Theory and Mechanism by Progressive Management
Cover of the book The Enlisted Experience: A Conversation with the Chief Master Sergeants of the Air Force - Vivid Account of Military Life from the 1940s to the 1970s, NCOs, World War II, Korea, SAC, Vietnam, Women by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: NBC Protection (FM 3-4) Nuclear, Biological, Chemical Hazards (Value-Added Professional Format Series) by Progressive Management
Cover of the book Space Shuttle Program History: Historical Documentation about the Jake Garn Mission Simulator And Training Facility, Building Five at the Johnson Space Center by Progressive Management
Cover of the book Responding to Gangs: Evaluation and Research - Evolution of Street Gangs, Young Women in Street Gangs, Homicides, GREAT Program, State Legislation and Gang Prosecution Units by Progressive Management
Cover of the book Enduring Quests, Daring Visions: NASA Astrophysics in the Next Three Decades - The Search for Life and Exoplanets, History of Galaxies, Origin and Fate of the Universe by Progressive Management
Cover of the book The Department of Homeland Security's Role in Protecting the National Economy: Border Trade Enforcement and Facilitation Missions to Provide Commercially Meaningful Benefits to Stakeholders by Progressive Management
Cover of the book Helicopters in Irregular Warfare: Algeria, Vietnam, and Afghanistan - Counterinsurgency, COIN, American, French, Soviet Militaries, Airmobility and Political Goals in Combat by Progressive Management
Cover of the book Complete Guide to the U.S. Army Signal Corps: Comprehensive Histories, Getting the Message Through from the Civil War to Today, World War II, Vietnam, Iraq, Advanced Training, Strategic Vision by Progressive Management
Cover of the book Space-Based Weapons: Lasers, Directed Energy Weapons, Weaponization of Space, Orbital Weapons, Bringing the Fight into Space, Attacking Terrestrial Targets, Political Implications by Progressive Management
Cover of the book Joint Doctrine for Operations in Nuclear, Biological, and Chemical (NBC) Environments (Joint Publication 3-11) - Combat Operations, Health Service Support, Hazard Considerations by Progressive Management
Cover of the book Unmanned Aircraft Systems (UAS): Joint Doctrine for Unmanned Aircraft Systems: The Air Force and the Army Hold the Key to Success (UAVs, Remotely Piloted Aircraft) by Progressive Management
Cover of the book NASA Lunar Science Institute (NLSI) Reports - Research into Polar Water, Dust and Atmosphere, Moon Origin and Evolution, Astrophysics, Training and Outreach by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy