Network Science

Complexity in Nature and Technology

Nonfiction, Science & Nature, Mathematics, Mathematical Analysis, Computers, Networking & Communications, Hardware, General Computing
Cover of the book Network Science by , Springer London
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781849963961
Publisher: Springer London Publication: August 24, 2010
Imprint: Springer Language: English
Author:
ISBN: 9781849963961
Publisher: Springer London
Publication: August 24, 2010
Imprint: Springer
Language: English

Network Science is the emerging field concerned with the study of large, realistic networks. This interdisciplinary endeavor, focusing on the patterns of interactions that arise between individual components of natural and engineered systems, has been applied to data sets from activities as diverse as high-throughput biological experiments, online trading information, smart-meter utility supplies, and pervasive telecommunications and surveillance technologies. This unique text/reference provides a fascinating insight into the state of the art in network science, highlighting the commonality across very different areas of application and the ways in which each area can be advanced by injecting ideas and techniques from another. The book includes contributions from an international selection of experts, providing viewpoints from a broad range of disciplines. It emphasizes networks that arise in nature—such as food webs, protein interactions, gene expression, and neural connections—and in technology—such as finance, airline transport, urban development and global trade. Topics and Features: begins with a clear overview chapter to introduce this interdisciplinary field; discusses the classic network science of fixed connectivity structures, including empirical studies, mathematical models and computational algorithms; examines time-dependent processes that take place over networks, covering topics such as synchronisation, and message passing algorithms; investigates time-evolving networks, such as the World Wide Web and shifts in topological properties (connectivity, spectrum, percolation); explores applications of complex networks in the physical and engineering sciences, looking ahead to new developments in the field. Researchers and professionals from disciplines as varied as computer science, mathematics, engineering, physics, chemistry, biology, ecology, neuroscience, epidemiology, and the social sciences will all benefit from this topical and broad overview of current activities and grand challenges in the unfolding field of network science.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Network Science is the emerging field concerned with the study of large, realistic networks. This interdisciplinary endeavor, focusing on the patterns of interactions that arise between individual components of natural and engineered systems, has been applied to data sets from activities as diverse as high-throughput biological experiments, online trading information, smart-meter utility supplies, and pervasive telecommunications and surveillance technologies. This unique text/reference provides a fascinating insight into the state of the art in network science, highlighting the commonality across very different areas of application and the ways in which each area can be advanced by injecting ideas and techniques from another. The book includes contributions from an international selection of experts, providing viewpoints from a broad range of disciplines. It emphasizes networks that arise in nature—such as food webs, protein interactions, gene expression, and neural connections—and in technology—such as finance, airline transport, urban development and global trade. Topics and Features: begins with a clear overview chapter to introduce this interdisciplinary field; discusses the classic network science of fixed connectivity structures, including empirical studies, mathematical models and computational algorithms; examines time-dependent processes that take place over networks, covering topics such as synchronisation, and message passing algorithms; investigates time-evolving networks, such as the World Wide Web and shifts in topological properties (connectivity, spectrum, percolation); explores applications of complex networks in the physical and engineering sciences, looking ahead to new developments in the field. Researchers and professionals from disciplines as varied as computer science, mathematics, engineering, physics, chemistry, biology, ecology, neuroscience, epidemiology, and the social sciences will all benefit from this topical and broad overview of current activities and grand challenges in the unfolding field of network science.

More books from Springer London

Cover of the book Autonomous and Autonomic Systems: With Applications to NASA Intelligent Spacecraft Operations and Exploration Systems by
Cover of the book Introduction to Biopsy Interpretation and Surgical Pathology by
Cover of the book Wind Power Electric Systems by
Cover of the book Clinical Cardiogenetics by
Cover of the book Lyapunov Functionals and Stability of Stochastic Difference Equations by
Cover of the book Regenerative Medicine Using Pregnancy-Specific Biological Substances by
Cover of the book Cloud Computing by
Cover of the book The Young Adult Hip in Sport by
Cover of the book Clinical In Vitro Fertilization by
Cover of the book Tumors and Tumor-Like Lesions of Bone by
Cover of the book Implantation by
Cover of the book Computer Medical Databases by
Cover of the book Introduction to Image Processing Using R by
Cover of the book Intramedullary Nailing by
Cover of the book From Linear Operators to Computational Biology by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy