New Theory of Discriminant Analysis After R. Fisher

Advanced Research by the Feature Selection Method for Microarray Data

Nonfiction, Health & Well Being, Medical, Reference, Biostatistics, Science & Nature, Mathematics, Statistics
Cover of the book New Theory of Discriminant Analysis After R. Fisher by Shuichi Shinmura, Springer Singapore
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Shuichi Shinmura ISBN: 9789811021640
Publisher: Springer Singapore Publication: December 27, 2016
Imprint: Springer Language: English
Author: Shuichi Shinmura
ISBN: 9789811021640
Publisher: Springer Singapore
Publication: December 27, 2016
Imprint: Springer
Language: English

This is the first book to compare eight LDFs by different types of datasets, such as Fisher’s iris data, medical data with collinearities, Swiss banknote data that is a linearly separable data (LSD), student pass/fail determination using student attributes, 18 pass/fail determinations using exam scores, Japanese automobile data, and six microarray datasets (the datasets) that are LSD. We developed the 100-fold cross-validation for the small sample method (Method 1) instead of the LOO method. We proposed a simple model selection procedure to choose the best model having minimum M2 and Revised IP-OLDF based on MNM criterion was found to be better than other M2s in the above datasets.

We compared two statistical LDFs and six MP-based LDFs. Those were Fisher’s LDF, logistic regression, three SVMs, Revised IP-OLDF, and another two OLDFs. Only a hard-margin SVM (H-SVM) and Revised IP-OLDF could discriminate LSD theoretically (Problem 2). We solved the defect of the generalized inverse matrices (Problem 3).

For more than 10 years, many researchers have struggled to analyze the microarray dataset that is LSD (Problem 5). If we call the linearly separable model "Matroska," the dataset consists of numerous smaller Matroskas in it. We develop the Matroska feature selection method (Method 2). It finds the surprising structure of the dataset that is the disjoint union of several small Matroskas. Our theory and methods reveal new facts of gene analysis.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This is the first book to compare eight LDFs by different types of datasets, such as Fisher’s iris data, medical data with collinearities, Swiss banknote data that is a linearly separable data (LSD), student pass/fail determination using student attributes, 18 pass/fail determinations using exam scores, Japanese automobile data, and six microarray datasets (the datasets) that are LSD. We developed the 100-fold cross-validation for the small sample method (Method 1) instead of the LOO method. We proposed a simple model selection procedure to choose the best model having minimum M2 and Revised IP-OLDF based on MNM criterion was found to be better than other M2s in the above datasets.

We compared two statistical LDFs and six MP-based LDFs. Those were Fisher’s LDF, logistic regression, three SVMs, Revised IP-OLDF, and another two OLDFs. Only a hard-margin SVM (H-SVM) and Revised IP-OLDF could discriminate LSD theoretically (Problem 2). We solved the defect of the generalized inverse matrices (Problem 3).

For more than 10 years, many researchers have struggled to analyze the microarray dataset that is LSD (Problem 5). If we call the linearly separable model "Matroska," the dataset consists of numerous smaller Matroskas in it. We develop the Matroska feature selection method (Method 2). It finds the surprising structure of the dataset that is the disjoint union of several small Matroskas. Our theory and methods reveal new facts of gene analysis.

More books from Springer Singapore

Cover of the book Surviving, Thriving and Reviving in Adolescence by Shuichi Shinmura
Cover of the book Encountering Development in the Age of Global Capitalism by Shuichi Shinmura
Cover of the book Judging the State in International Trade and Investment Law by Shuichi Shinmura
Cover of the book Microwave Chemical and Materials Processing by Shuichi Shinmura
Cover of the book Transatlantic Transitions by Shuichi Shinmura
Cover of the book 10th International Conference on Robotics, Vision, Signal Processing and Power Applications by Shuichi Shinmura
Cover of the book Advances in Big Data and Cloud Computing by Shuichi Shinmura
Cover of the book Bioresources and Bioprocess in Biotechnology by Shuichi Shinmura
Cover of the book Study on Ground Moving Target Indication and Imaging Technique of Airborne SAR by Shuichi Shinmura
Cover of the book Clean and Sustainable Groundwater in India by Shuichi Shinmura
Cover of the book Advances in Dye Removal Technologies by Shuichi Shinmura
Cover of the book Cross-Sectional Atlas of the Human Head by Shuichi Shinmura
Cover of the book Proceedings of the 3rd International Halal Conference (INHAC 2016) by Shuichi Shinmura
Cover of the book Plasmonic Organic Solar Cells by Shuichi Shinmura
Cover of the book Cell Biology of the Ovary by Shuichi Shinmura
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy