Non-Self-Adjoint Boundary Eigenvalue Problems

Nonfiction, Science & Nature, Mathematics, Differential Equations, Mathematical Analysis
Cover of the book Non-Self-Adjoint Boundary Eigenvalue Problems by R. Mennicken, M. Möller, Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: R. Mennicken, M. Möller ISBN: 9780080537733
Publisher: Elsevier Science Publication: June 26, 2003
Imprint: North Holland Language: English
Author: R. Mennicken, M. Möller
ISBN: 9780080537733
Publisher: Elsevier Science
Publication: June 26, 2003
Imprint: North Holland
Language: English

This monograph provides a comprehensive treatment of expansion theorems for regular systems of first order differential equations and n-th order ordinary differential equations.
In 10 chapters and one appendix, it provides a comprehensive treatment from abstract foundations to applications in physics and engineering. The focus is on non-self-adjoint problems. Bounded operators are associated to these problems, and Chapter 1 provides an in depth investigation of eigenfunctions and associated functions for bounded Fredholm valued operators in Banach spaces. Since every n-th order differential equation is equivalent
to a first order system, the main techniques are developed for systems. Asymptotic fundamental
systems are derived for a large class of systems of differential equations. Together with boundary
conditions, which may depend polynomially on the eigenvalue parameter, this leads to the definition of Birkhoff and Stone regular eigenvalue problems. An effort is made to make the conditions relatively easy verifiable; this is illustrated with several applications in chapter 10.
The contour integral method and estimates of the resolvent are used to prove expansion theorems.
For Stone regular problems, not all functions are expandable, and again relatively easy verifiable
conditions are given, in terms of auxiliary boundary conditions, for functions to be expandable.
Chapter 10 deals exclusively with applications; in nine sections, various concrete problems such as
the Orr-Sommerfeld equation, control of multiple beams, and an example from meteorology are investigated.

Key features:

• Expansion Theorems for Ordinary Differential Equations
• Discusses Applications to Problems from Physics and Engineering
• Thorough Investigation of Asymptotic Fundamental Matrices and Systems
• Provides a Comprehensive Treatment
• Uses the Contour Integral Method
• Represents the Problems as Bounded Operators
• Investigates Canonical Systems of Eigen- and Associated Vectors for Operator Functions

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This monograph provides a comprehensive treatment of expansion theorems for regular systems of first order differential equations and n-th order ordinary differential equations.
In 10 chapters and one appendix, it provides a comprehensive treatment from abstract foundations to applications in physics and engineering. The focus is on non-self-adjoint problems. Bounded operators are associated to these problems, and Chapter 1 provides an in depth investigation of eigenfunctions and associated functions for bounded Fredholm valued operators in Banach spaces. Since every n-th order differential equation is equivalent
to a first order system, the main techniques are developed for systems. Asymptotic fundamental
systems are derived for a large class of systems of differential equations. Together with boundary
conditions, which may depend polynomially on the eigenvalue parameter, this leads to the definition of Birkhoff and Stone regular eigenvalue problems. An effort is made to make the conditions relatively easy verifiable; this is illustrated with several applications in chapter 10.
The contour integral method and estimates of the resolvent are used to prove expansion theorems.
For Stone regular problems, not all functions are expandable, and again relatively easy verifiable
conditions are given, in terms of auxiliary boundary conditions, for functions to be expandable.
Chapter 10 deals exclusively with applications; in nine sections, various concrete problems such as
the Orr-Sommerfeld equation, control of multiple beams, and an example from meteorology are investigated.

Key features:

• Expansion Theorems for Ordinary Differential Equations
• Discusses Applications to Problems from Physics and Engineering
• Thorough Investigation of Asymptotic Fundamental Matrices and Systems
• Provides a Comprehensive Treatment
• Uses the Contour Integral Method
• Represents the Problems as Bounded Operators
• Investigates Canonical Systems of Eigen- and Associated Vectors for Operator Functions

More books from Elsevier Science

Cover of the book Oil and Gas Pipelines and Piping Systems by R. Mennicken, M. Möller
Cover of the book Nanotube Superfiber Materials by R. Mennicken, M. Möller
Cover of the book Carbon-13 NMR Spectroscopy of Biological Systems by R. Mennicken, M. Möller
Cover of the book Probability Theory and Mathematical Statistics for Engineers by R. Mennicken, M. Möller
Cover of the book Breakthrough Food Product Innovation Through Emotions Research by R. Mennicken, M. Möller
Cover of the book Advances in Protein Chemistry and Structural Biology by R. Mennicken, M. Möller
Cover of the book Diagnosing Wild Species Harvest by R. Mennicken, M. Möller
Cover of the book Elements of Statistical Mechanics by R. Mennicken, M. Möller
Cover of the book Reconstituting the Cytoskeleton by R. Mennicken, M. Möller
Cover of the book Pesticide Risk Assessment in Rice Paddies: Theory and Practice by R. Mennicken, M. Möller
Cover of the book Neural Systems for Control by R. Mennicken, M. Möller
Cover of the book Tribology of Polymeric Nanocomposites by R. Mennicken, M. Möller
Cover of the book Hormones, Lipoproteins and Atherosclerosis by R. Mennicken, M. Möller
Cover of the book Advances in Computers by R. Mennicken, M. Möller
Cover of the book Neuro-Psychopharmacology by R. Mennicken, M. Möller
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy