Nonparametric Bayesian Inference in Biostatistics

Nonfiction, Health & Well Being, Medical, Reference, Biostatistics, Science & Nature, Mathematics, Science, Biological Sciences
Cover of the book Nonparametric Bayesian Inference in Biostatistics by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319195186
Publisher: Springer International Publishing Publication: July 25, 2015
Imprint: Springer Language: English
Author:
ISBN: 9783319195186
Publisher: Springer International Publishing
Publication: July 25, 2015
Imprint: Springer
Language: English

As chapters in this book demonstrate, BNP has important uses in clinical sciences and inference for issues like unknown partitions in genomics. Nonparametric Bayesian approaches (BNP) play an ever expanding role in biostatistical inference from use in proteomics to clinical trials. Many research problems involve an abundance of data and require flexible and complex probability models beyond the traditional parametric approaches. As this book's expert contributors show, BNP approaches can be the answer. Survival Analysis, in particular survival regression, has traditionally used BNP, but BNP's potential is now very broad. This applies to important tasks like arrangement of patients into clinically meaningful subpopulations and segmenting the genome into functionally distinct regions. This book is designed to both review and introduce application areas for BNP. While existing books provide theoretical foundations, this book connects theory to practice through engaging examples and research questions. Chapters cover: clinical trials, spatial inference, proteomics, genomics, clustering, survival analysis and ROC curve.

 

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

As chapters in this book demonstrate, BNP has important uses in clinical sciences and inference for issues like unknown partitions in genomics. Nonparametric Bayesian approaches (BNP) play an ever expanding role in biostatistical inference from use in proteomics to clinical trials. Many research problems involve an abundance of data and require flexible and complex probability models beyond the traditional parametric approaches. As this book's expert contributors show, BNP approaches can be the answer. Survival Analysis, in particular survival regression, has traditionally used BNP, but BNP's potential is now very broad. This applies to important tasks like arrangement of patients into clinically meaningful subpopulations and segmenting the genome into functionally distinct regions. This book is designed to both review and introduce application areas for BNP. While existing books provide theoretical foundations, this book connects theory to practice through engaging examples and research questions. Chapters cover: clinical trials, spatial inference, proteomics, genomics, clustering, survival analysis and ROC curve.

 

More books from Springer International Publishing

Cover of the book Summability Calculus by
Cover of the book The Interaction Between Local and International Peacebuilding Actors by
Cover of the book Magnetic Resonance Spectroscopy of Degenerative Brain Diseases by
Cover of the book How Nature Works by
Cover of the book Reviews of Environmental Contamination and Toxicology Volume 241 by
Cover of the book Gas Separation Membranes by
Cover of the book Future Internet Testing by
Cover of the book Arts and Culture for Older People in Singapore: An Annotated Bibliography by
Cover of the book Analysis, Modelling, Optimization, and Numerical Techniques by
Cover of the book Photocatalytic Activity Enhancement of Titanium Dioxide Nanoparticles by
Cover of the book Chaperokine Activity of Heat Shock Proteins by
Cover of the book Global and Asian Perspectives on International Migration by
Cover of the book CSR Discovery Leadership by
Cover of the book Foundations for Innovative Application of Airborne Radars by
Cover of the book Data Analytics and Decision Support for Cybersecurity by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy